Computational Molecular Biology 2025, Vol.15, No.6, 291-298 http://bioscipublisher.com/index.php/cmb 298 Mehra S., Mohan S., and Agarwal N., 2025, Case study on the effectiveness of feature engineering techniques for performance improvement of data mining applications, In: 2025 International Conference on Intelligent Control, Computing and Communications (IC3), IEEE, pp.248-252. https://doi.org/10.1109/ic363308.2025.10956338 Meslamani A., Sobrino I., and De La Fuente J., 2024, Machine learning in infectious diseases: potential applications and limitations, Annals of Medicine, 56(1): 2869. https://doi.org/10.1080/07853890.2024.2362869 Mumuni A., and Mumuni F., 2024, Automated data processing and feature engineering for deep learning and big data applications: a survey, Journal of Intelligent Information Systems, 3(2): 113-153. https://doi.org/10.1016/j.jiixd.2024.01.002 Opata M., Lavarello-Schettini A., Semenza J., and Rocklöv J., 2025, Predictiveness and drivers of highly pathogenic avian influenza outbreaks in Europe, Scientific Reports, 15(1): 20286. https://doi.org/10.1038/s41598-025-04624-x Pinto D., Themudo G., Pereira A., Botelho A., and Cunha M., 2024, Rescue of Mycobacterium bovis DNA from cultured samples for robust whole-genome sequencing during animal TB surveillance, International Journal of Molecular Sciences, 25(7): 3869. https://doi.org/10.3390/ijms25073869 Prentice M., Gilbertson M., Storm D., Turner W., Walsh D., Pinkerton M., and Kamath P., 2024, Metagenomic sequencing identifies microbes associated with pneumonia-related fatalities of white-tailed deer (Odocoileus virginianus), Microbial Genomics, 10(3): 001214. https://doi.org/10.1099/mgen.0.001214 Santosh K., 2020, AI-driven tools for coronavirus outbreak: need of active learning and cross-population models on multimodal data, Journal of Medical Systems, 44(5): 93. https://doi.org/10.1007/s10916-020-01562-1 Shafi M., Shabir S., Jan S., Wani Z., Rather M., Beigh Y., Kamil S., Mir M., Rafiq A., and Shah S., 2025, The role of artificial intelligence in detecting avian influenza virus outbreaks: a review, Open Veterinary Journal, 15(5): 1880-1894. https://doi.org/10.5455/ovj.2025.v15.i5.4 Stärk K., Pękala A., and Muellner P., 2019, Use of molecular and genomic data for disease surveillance in aquaculture: toward improved evidence-based decisions, Preventive Veterinary Medicine, 167: 190-195. https://doi.org/10.1016/j.prevetmed.2018.04.011 Struelens M., Ludden C., Werner G., Sintchenko V., Jokelainen P., and Ip M., 2024, Real-time genomic surveillance for enhanced control of infectious diseases and antimicrobial resistance, Frontiers in Science, 2: 1298248. https://doi.org/10.3389/fsci.2024.1298248 Sultana R., and Rozony F., 2025, A meta-analysis of artificial intelligence-driven data engineering: evaluating cloud-based integration models, ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01): 193-214. https://doi.org/10.63125/8a5k2j16 Yoo D., Song Y., Choi D., Lim J., Lee K., and Kang T., 2021, Machine learning-driven dynamic risk prediction for highly pathogenic avian influenza at poultry farms in Korea, Transboundary and Emerging Diseases, 69(5): 2667-2681. https://doi.org/10.1111/tbed.14419 Yoon H., Kim K., and Son Y., 2025, Enhancing AI-based risk prediction for animal disease outbreaks in Korea using KAHIS big data, Journal of Veterinary Science and Research, 12(1): 4968. https://doi.org/10.52338/jovsr.2025.4968 Yousefinaghani S., Dara R., Poljak Z., Bernardo T., and Sharif S., 2019, Assessment of Twitter’s potential for outbreak detection: avian influenza case study, Scientific Reports, 9(1): 54388. https://doi.org/10.1038/s41598-019-54388-4 Zhao A., Li S., Cao Z., Hu P., Wang J., Xiang Y., Xie D., and Lu X., 2024, AI for science: predicting infectious diseases, Journal of Safety Science and Resilience, 5(2): 130-146. https://doi.org/10.1016/j.jnlssr.2024.02.002
RkJQdWJsaXNoZXIy MjQ4ODYzNA==