Computational Molecular Biology 2025, Vol.15, No.6, 291-298 http://bioscipublisher.com/index.php/cmb 297 Acknowledgments We extend our sincere thanks to two anonymous peer reviewers for their invaluable feedback on the manuscript of this paper. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Alwakeel M., 2025, AI-assisted real-time monitoring of infectious diseases in urban areas, Mathematics, 13(12): 1911. https://doi.org/10.3390/math13121911 Ardabili S., Mosavi A., Ghamisi P., Ferdinand F., Várkonyi-Kóczy A., Reuter U., Rabczuk T., and Atkinson P., 2020, COVID-19 outbreak prediction with machine learning, Algorithms, 13(10): 249. https://doi.org/10.1101/2020.04.17.20070094 Baker Y., Tang T., and Allen G., 2019, Feature selection for data integration with mixed multiview data, Annals of Applied Statistics, 14(4): 1676-1698. https://doi.org/10.1214/20-aoas1389 Bautista C., Jaswant G., French H., Campbell K., Durrant R., Gifford R., Kia G., Ogoti B., Hampson K., and Brunker K., 2023, Whole genome sequencing for rapid characterization of rabies virus using nanopore technology, Journal of Visualized Experiments, 191: e65414. https://doi.org/10.3791/65414 Chadha A., Dara R., Pearl D., Sharif S., and Poljak Z., 2023, Predictive analysis for pathogenicity classification of H5Nx avian influenza strains using machine learning techniques, Preventive Veterinary Medicine, 216: 105924. https://doi.org/10.1016/j.prevetmed.2023.105924 Dubey A., Gupta K., S., Sankari A., Namani S., and Hemalatha R., 2025, Predicting disease outbreaks with AI: an in-depth analysis of infectious diseases surveillance, In: 2025 International Conference on Frontier Technologies and Solutions (ICFTS), IEEE, pp.1-7. https://doi.org/10.1109/icfts62006.2025.11031614 Ezanno P., Picault S., Beaunée G., Bailly X., Muñoz F., Duboz R., Monod H., and Guégan J., 2021, Research perspectives on animal health in the era of artificial intelligence, Veterinary Research, 52(1): 40. https://doi.org/10.1186/s13567-021-00902-4 Gao S., Chakraborty A., Greiner R., Lewis M., and Wang H., 2025, Early detection of disease outbreaks and non-outbreaks using incidence data based on feature-based time series classification and machine learning, PLOS Computational Biology, 21(2): e1012782. https://doi.org/10.1371/journal.pcbi.1012782 Ghielmetti G., Loubser J., Kerr T., Stuber T., Thacker T., Martin L., O’Hare M., Mhlophe S., Okunola A., Loxton A., Warren R., Moseley M., Miller M., and Goosen W., 2023, Advancing animal tuberculosis surveillance using culture-independent long-read whole-genome sequencing, Frontiers in Microbiology, 14: 1307440. https://doi.org/10.3389/fmicb.2023.1307440 Guo W., Lv C., Guo M., Zhao Q., Yin X., and Zhang L., 2023, Innovative applications of artificial intelligence in zoonotic disease management, Science in One Health, 2: 100045. https://doi.org/10.1016/j.soh.2023.100045 Jin W., Dong S., Yu C., and Luo Q., 2022, A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning, Computers in Biology and Medicine, 146: 105560. https://doi.org/10.1016/j.compbiomed.2022.105560 Kaur J., and Butt Z., 2025, AI-driven epidemic intelligence: the future of outbreak detection and response, Frontiers in Artificial Intelligence, 8: 1645467. https://doi.org/10.3389/frai.2025.1645467 Kawasaki J., Kojima S., Tomonaga K., and Horie M., 2021, Hidden viral sequences in public sequencing data and warning for future emerging diseases, mBio, 12(4): 10.1128/mbio. 01638-21. https://doi.org/10.1128/mbio.01638-21 Keshavamurthy R., Dixon S., Pazdernik K., and Charles L., 2022, Predicting infectious disease for biopreparedness and response: a systematic review of machine learning and deep learning approaches, One Health, 15: 100439. https://doi.org/10.1016/j.onehlt.2022.100439 Knijn A., Michelacci V., Gigliucci F., Tozzoli R., Chiani P., Minelli F., Scavia G., Ventola E., and Morabito S., 2023, IRIDA-ARIES Genomics: a key player in the One Health surveillance of infectious diseases in Italy, Frontiers in Public Health, 11: 1151568. https://doi.org/10.3389/fpubh.2023.1151568 Lytras S., Lamb K., Ito J., Grove J., Yuan K., Sato K., Hughes J., and Robertson D., 2025, Pathogen genomic surveillance and the AI revolution, Journal of Virology, 99(2): e01601-24. https://doi.org/10.1128/jvi.01601-24 Madhava G., Yousefinaghani S., Dara R., Poljak Z., Sharif S., Laera M., Sangiorgi F., Verdi F., Roversi R., Garuti M., Calzolari M., Gibertoni M., Martello S., and Gherardi M., 2024, Advanced machine learning and deep learning approaches for predicting avian influenza outbreaks, EPRA International Journal of Research & Development (IJRD), 9(9): 21-30. https://doi.org/10.36713/epra18191
RkJQdWJsaXNoZXIy MjQ4ODYzNA==