Computational Molecular Biology 2025, Vol.15, No.6, 282-290 http://bioscipublisher.com/index.php/cmb 289 Deng R., Li Y., Feng N., Zheng D., Khan A., Du Y., Zhang J., Sun Z., Wu J., Xue Y., and Huang Z., 2025, Integrative analysis of transcriptome and metabolome reveal molecular mechanism of tolerance to salt stress in rice, BMC Plant Biology, 25(1): 335. https://doi.org/10.1186/s12870-025-06300-8 Derakhshani Z., Bhave M., and Shah R., 2020, Metabolic contribution to salinity stress response in grains of two barley cultivars with contrasting salt tolerance, Environmental and Experimental Botany, 179: 104229. https://doi.org/10.1016/j.envexpbot.2020.104229 Du X., Feng N., Zheng D., Lin Y., Zhou H., Li J., Yang X., Huo J., and Mei W., 2025, Effects of exogenous Uniconazole (S3307) on oxidative damage and carbon metabolism of rice under salt stress, BMC Plant Biology, 25(1): 541. https://doi.org/10.1186/s12870-025-06467-0 Fallahi S., Skaug H., and Alendal G., 2020, A comparison of Monte Carlo sampling methods for metabolic network models, PLoS ONE, 15(7): e0235393. https://doi.org/10.1371/journal.pone.0235393 Gerona M., Deocampo M., Egdane J., Ismail A., and Dionisio-Sese M., 2019, Physiological responses of contrasting rice genotypes to salt stress at reproductive stage, Rice Science, 26(4): 207-219. https://doi.org/10.1016/j.rsci.2019.05.001 Karlsen E., Schulz C., and Almaas E., 2018, Automated generation of genome-scale metabolic draft reconstructions based on KEGG, BMC Bioinformatics, 19(1): 467. https://doi.org/10.1186/s12859-018-2472-z Kong W., Zhong H., Gong Z., Fang X., Sun T., Deng X., and Li Y., 2019, Meta-analysis of salt stress transcriptome responses in different rice genotypes at the seedling stage, Plants, 8(3): 64. https://doi.org/10.3390/plants8030064 Krasensky J., and Jonak C., 2012, Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks, Journal of Experimental Botany, 63(4): 1593-1608. https://doi.org/10.1093/jxb/err460 Lelekami M., Pahlevani M., Nezhad K., and Mashaki K., 2025, Gene metabolite relationships revealed metabolic adaptations of rice salt tolerance, Scientific Reports, 15(1): 2404. https://doi.org/10.1038/s41598-025-86604-9 Li J., Waldherr S., and Weckwerth W., 2023, COVRECON: automated integration of genome- and metabolome-scale network reconstruction and data-driven inverse modeling of metabolic interaction networks, Bioinformatics, 39(7): btad397. https://doi.org/10.1093/bioinformatics/btad397 Liu C., Mao B., Yuan D., Chu C., and Duan M., 2022, Salt tolerance in rice: physiological responses and molecular mechanisms, Crop Journal, 10(1): 13-25. https://doi.org/10.1016/j.cj.2021.02.010 Liu J., Tang M., Lu Y., Yan H., Liu Y., Cao Y., Song X., Liu Q., and Ji X., 2025, OsVPS16 deficiency enhances salinity tolerance in rice by regulating ion homeostasis, antioxidant activity, and stress-responsive gene expression, Agronomy, 15(5): 1146. https://doi.org/10.3390/agronomy15051146 Luo F., Zhou X.L., Yin M.M., Li J., Zhu Q., Dong H.R., Chen L.J., and Lee D.S., 2024, Dynamic changes and biological significance of MicroRNA expression profiles in rice under cold stress, Rice Genomics and Genetics, 15(3): 251-263. https://doi.org/10.5376/rgg.2024.15.0025 Pandey V., 2025, MiNEApy: enhancing enrichment network analysis in metabolic networks, Bioinformatics, 41(3): btaf077. https://doi.org/10.1093/bioinformatics/btaf077 Praphasanobol P., Chokwiwatkul R., Habila S., Chantawong Y., Buaboocha T., Comai L., and Chadchawan S., 2025, Effects of salt stress at the booting stage of grain development on physiological responses, starch properties, and starch-related gene expression in rice (Oryza sativa L.), Plants, 14(6): 885. https://doi.org/10.3390/plants14060885 Rajkumari N., Chowrasia S., Nishad J., Ganie S., and Mondal T., 2023, Metabolomics-mediated elucidation of rice responses to salt stress, Planta, 258(6): 111. https://doi.org/10.1007/s00425-023-04258-1 Renault H., Amrani E., Berger A., Mouille G., Soubigou-Taconnat L., Bouchereau A., and Deleu C., 2013, γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots, Plant, Cell & Environment, 36(5): 1009-1018. https://doi.org/10.1111/pce.12033 Sharma K., and Kapoor R., 2023, Arbuscular mycorrhiza differentially adjusts central carbon metabolism in two contrasting genotypes of Vigna radiata (L.) Wilczek in response to salt stress, Plant Science, 332: 111706. https://doi.org/10.1016/j.plantsci.2023.111706 Tong H., Wang C., Han X., Sun Q., Luo E., Yang C., Xu G., Ou X., Li S., Zhang J., and Yang J., 2025, Multi-omics-based construction of ncRNA-gene-metabolite networks provides new insights into metabolic regulation under salt stress in rice, Rice, 18(1): 50. https://doi.org/10.1186/s12284-025-00811-6 Töpfer N., Kleessen S., and Nikoloski Z., 2015, Integration of metabolomics data into metabolic networks, Frontiers in Plant Science, 6: 49. https://doi.org/10.3389/fpls.2015.00049 Vlassis N., Pacheco M., and Sauter T., 2013, Fast reconstruction of compact context-specific metabolic network models, PLoS Computational Biology, 10(1): e1003424. https://doi.org/10.1371/journal.pcbi.1003424
RkJQdWJsaXNoZXIy MjQ4ODYzNA==