Computational Molecular Biology 2025, Vol.15, No.6, 273-281 http://bioscipublisher.com/index.php/cmb 280 Dong Z.Y., 2024, Impact of Bt applications on soil microbial communities, Bt Research, 15(6): 276-283. http://dx.doi.org/10.5376/bt.2024.15.0028 Goldstein S., Beka L., Graf J., and Klassen J., 2018, Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing, BMC Genomics, 20(1): 23. https://doi.org/10.1186/s12864-018-5381-7 Gomez S., Sic W., Haridas S., Labutti K., Eichenberger J., Kaur N., Lipzen A., Barry K., Goodwin S., Gribskov M., and Grigoriev I., 2024, Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes, Frontiers in Fungal Biology, 5: 1418145. https://doi.org/10.3389/ffunb.2024.1418145 González-Torres P., and Gabaldón T., 2018, Genome variation in the model halophilic bacteriumSalinibacter ruber, Frontiers in Microbiology, 9: 1499. https://doi.org/10.3389/fmicb.2018.01499 Gould A., and Henderson J., 2023, Comparative genomics of symbiotic Photobacteriumusing highly contiguous genome assemblies from long read sequences, Microbial Genomics, 9(12): 001161. https://doi.org/10.1099/mgen.0.001161 Li L., Liu Z., Zhang M., Meng D., Liu X., Wang P., Li X., Jiang Z., Zhong S., Jiang C., and Yin H., 2020, Insights into the metabolism and evolution of the genus Acidiphilium, a typical acidophile in acid mine drainage, mSystems, 5(6): 10.1128/msystems. 00867-20. https://doi.org/10.1128/msystems.00867-20 Mangoma N., Zhou N., and Ncube T., 2024, Metagenome-assembled genomes provide insight into the microbial taxonomy and ecology of the Buhera soda pans, Zimbabwe, PLoS ONE, 19(12): e0299620. https://doi.org/10.1371/journal.pone.0299620 Manni M., Berkeley M., Seppey M., and Zdobnov E., 2021, BUSCO: assessing genomic data quality and beyond, Current Protocols, 1(12): e323. https://doi.org/10.1002/cpz1.323 Neal-McKinney J., Liu K., Lock C., Wu W., and Hu J., 2021, Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni, Scientific Reports, 11(1): 5676. https://doi.org/10.1038/s41598-021-84956-6 Neubert K., Zuchantke E., Leidenfrost R., Wuenschiers R., Grützke J., Malorny B., Brendebach H., Dahouk A., Homeier T., Hotzel H., Reinert K., Tomaso H., and Busch A., 2021, Testing assembly strategies of Francisella tularensis genomes to infer an evolutionary conservation analysis of genomic structures, BMC Genomics, 22(1): 822. https://doi.org/10.1186/s12864-021-08115-x Olagoke O., Aziz A., Zhu L., Read T., and Dean D., 2025, Whole-genome automated assembly pipeline for Chlamydia trachomatis strains from reference, in vitro and clinical samples using the integrated CtGAP pipeline, NAR Genomics and Bioinformatics, 7(1): lqae187. https://doi.org/10.1093/nargab/lqae187 Qin Q., Ling C., Zhao Y., Yang T., Yin J., Guo Y., and Chen G., 2018, CRISPR/Cas9 editing genome of extremophile Halomonas spp., Metabolic Engineering, 47: 219-229. https://doi.org/10.1016/j.ymben.2018.03.018 Safari M., Butler J., Randhawa G., Hill K., and Kari L., 2025, Life at the extremes: maximally divergent microbes with similar genomic signatures linked to extreme environments, bioRxiv, 4: 657665. https://doi.org/10.1101/2025.06.04.657665 Salwan R., and Sharma V., 2022, Genomics of prokaryotic extremophiles to unfold the mystery of survival in extreme environments, Microbiological Research, 264: 127156. https://doi.org/10.1016/j.micres.2022.127156 Shen L., Liu Y., Chen L., Lei T., Ren P., Ji M., Song W., Lin H., Su W., Wang S., Rooman M., and Pucci F., 2024, Genomic basis of environmental adaptation in the widespread poly-extremophilic Exiguobacteriumgroup, The ISME Journal, 18(1): wrad020. https://doi.org/10.1093/ismejo/wrad020 Sohail H., Naveed M., Aziz T., Mohamed R., and Al-Joufi F., 2025, Whole-genome analysis of Bacillus subtilis MBBL2 genomic characterization and comparative genomics, Functional and Integrative Genomics, 25(1): 1-13. https://doi.org/10.1007/s10142-025-01684-0 Srivastava R., Patel V., Sharma A., Srivastava A., Srivastava A., and Saxena A., 2017, De novo assembly, functional annotation and comparative alignment of whole genome of a halo-tolerant Exiguobacterium profundumPHM11 with related genomes, Canadian Journal of Biotechnology, 1(Special): 124. https://doi.org/10.24870/cjb.2017-a110 Verma D., Joshi S., Ghimire P., Mishra A., and Kumar V., 2024, Developments in extremophilic bacterial genomics: a post next generation sequencing era, Ecological Genetics and Genomics, 32: 100255. https://doi.org/10.1016/j.egg.2024.100255 Verma D., Kumar V., and Satyanarayana T., 2022, Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea, World Journal of Microbiology and Biotechnology, 38(8): 135. https://doi.org/10.1007/s11274-022-03327-z Wang Y., Zhao M., Wang Z., Luo X., Wang C., and Guo B., 2025, Whole genome sequence data of Comamonas sediminis FS4_11, a Fumonisin B1-Transforming Bacterium, Using Hybrid Nanopore-Illumina Sequencing, Data in Brief, 2025: 111829. https://doi.org/10.1016/j.dib.2025.111829
RkJQdWJsaXNoZXIy MjQ4ODYzNA==