Computational Molecular Biology 2025, Vol.15, No.6, 265-272 http://bioscipublisher.com/index.php/cmb 272 Rapin N., Lund O., Bernaschi M., and Castiglione F., 2010, Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system, PLoS ONE, 5(4): e9862. https://doi.org/10.1371/journal.pone.0009862 Rawal K., Sinha R., Abbasi B., Chaudhary A., Nath S., Kumari P., Preeti P., Saraf D., Singh S., Mishra K., Gupta P., Mishra A., Sharma T., Gupta S., Singh P., Sood S., Subramani P., Dubey A., Strych U., Hotez P., and Bottazzi M., 2021, Identification of vaccine targets in pathogens and design of a vaccine using computational approaches, Scientific Reports, 11(1): 17626. https://doi.org/10.1038/s41598-021-96863-x Shinde P., Willemsen L., Anderson M., Aoki M., Basu S., Burel J., Cheng P., Dastidar S., Dunleavy A., Einav T., Forschmiedt J., Fourati S., Garcia J., Gibson W., Greenbaum J., Guan L., Guan W., Gygi J., Ha B., Hou J., Hsiao J., Huang Y., Jansen R., Kakoty B., Kang Z., Kobie J., Kojima M., Konstorum A., Lee J., Lewis S., Li A., Lock E., Mahita J., Mendes M., Meng H., Neher A., Nili S., Olsen L., Orfield S., Overton J., Pai N., Parker C., Qian B., Rasmussen M., Reyna J., Richardson E., Safo S., Sorenson J., Srinivasan A., Thrupp N., Tippalagama R., Trevizani R., Ventz S., Wang J., Wu C., Ay F., Grant B., Kleinstein S., and Peters B., 2025, Putting computational models of immunity to the test—An invited challenge to predict B. pertussis vaccination responses, PLOS Computational Biology, 21(3): e1012927. https://doi.org/10.1371/journal.pcbi.1012927 Tang X., Deng J., He C., Xu Y., Bai S., Guo Z., Du G., Ouyang D., and Sun X., 2025, Application of in-silico approaches in subunit vaccines: overcoming the challenges of antigen and adjuvant development, Journal of Controlled Release, 381: 113629. https://doi.org/10.1016/j.jconrel.2025.113629 Wilman W., Wróbel S., Bielska W., Deszynski P., Dudzic P., Jaszczyszyn I., Kaniewski J., Mlokosiewicz J., Rouyan A., Satlawa T., Kumar S., Greiff V., and Krawczyk K., 2022, Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery, Briefings in Bioinformatics, 23(4): bbac267. https://doi.org/10.1093/bib/bbac267 Zaher M., El-Husseiny M., Hagag N., El-Amir A., Zowalaty M., and Tammam R., 2025, A novel immunoinformatic approach for design and evaluation of heptavalent multiepitope foot-and-mouth disease virus vaccine, BMC Veterinary Research, 21(1): 152. https://doi.org/10.1186/s12917-025-04509-1 Zhang W., Hawkins P., He J., Gupta N., Liu J., Choonoo G., Jeong S., Chen C., Dhanik A., Dillon M., Deering R., Macdonald L., Thurston G., and Atwal G., 2021, A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity, Science Advances, 7(20): eabf5835. https://doi.org/10.1126/sciadv.abf5835
RkJQdWJsaXNoZXIy MjQ4ODYzNA==