CMB_2025v15n6

Computational Molecular Biology 2025, Vol.15, No.6, 265-272 http://bioscipublisher.com/index.php/cmb 271 Atitey K., and Anchang B., 2022, Mathematical modeling of proliferative immune response initiated by interactions between classical antigen-presenting cells under joint antagonistic IL-2 and IL-4 signaling, Frontiers in Molecular Biosciences, 9: 777390. https://doi.org/10.3389/fmolb.2022.777390 Basmenj E., Pajhouh S., Fallah A., Naijian R., Rahimi E., Atighy H., Ghiabi S., and Ghiabi S., 2025, Computational epitope-based vaccine design with bioinformatics approach: a review, Heliyon, 11(1): e41714. https://doi.org/10.1016/j.heliyon.2025.e41714 Bravi B., 2024, Development and use of machine learning algorithms in vaccine target selection, NPJ Vaccines, 9(1): 15. https://doi.org/10.1038/s41541-023-00795-8 Dalsass M., Brozzi A., Medini D., and Rappuoli R., 2019, Comparison of open-source reverse vaccinology programs for bacterial vaccine antigen discovery, Frontiers in Immunology, 10: 113. https://doi.org/10.3389/fimmu.2019.00113 De Groot A., Moise L., Terry F., Gutiérrez A., Hindocha P., Richard G., Hoft D., Ross T., Noe A., Takahashi Y., Kotraiah V., Silk S., Nielsen C., Minassian A., Ashfield R., Ardito M., Draper S., and Martin W., 2020, Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools, Frontiers in Immunology, 11: 442. https://doi.org/10.3389/fimmu.2020.00442 El Arab R., Alkhunaizi M., Alhashem Y., Khatib A., Bubsheet M., and Hassanein S., 2025, Artificial intelligence in vaccine research and development: an umbrella review, Frontiers in Immunology, 16: 1567116. https://doi.org/10.3389/fimmu.2025.1567116 Gao Y., Gao Y., Fan Y., Zhu C., Wei Z., Zhou C., Chuai G., Chen Q., Zhang H., and Liu Q., 2023, Pan-peptide meta learning for T-cell receptor–antigen binding recognition, Nature Machine Intelligence,5(3): 236-249. https://doi.org/10.1038/s42256-023-00619-3 Guarra F., and Colombo G., 2023, Computational methods in immunology and vaccinology: design and development of antibodies and immunogens, Journal of Chemical Theory and Computation, 19(16): 5315-5333. https://doi.org/10.1021/acs.jctc.3c00513 Hashim O., and Dimier-Poisson I., 2025, Computational vaccine development against protozoa, Computational and Structural Biotechnology Journal, 27: 2386-2393. https://doi.org/10.1016/j.csbj.2025.06.011 He X., and Wang S.B., 2024, Global trends in veterinary vaccine development for emerging pathogens, Molecular Pathogens, 15(2): 61-71. http://dx.doi.org/10.5376/mp.2024.15.0007 Kamali M., Salehi M., and Fath M., 2025, Advancing personalized immunotherapy for melanoma: integrating immunoinformatics in multi-epitope vaccine development, neoantigen identification via NGS, and immune simulation evaluation, Computers in Biology and Medicine, 188: 109885. https://doi.org/10.1016/j.compbiomed.2025.109885 Kardani K., Bolhassani A., and Namvar A., 2020, An overview of in silico vaccine design against different pathogens and cancer, Expert Review of Vaccines, 19(8): 699-726. https://doi.org/10.1080/14760584.2020.1794832 Leon C., Tokarev A., Bouchnita A., and Volpert V., 2023, Modelling of the innate and adaptive immune response to SARS viral infection, cytokine storm and vaccination, Vaccines, 11(1): 127. https://doi.org/10.3390/vaccines11010127 Li X.H., Liang H.B., and Xuan J., 2024, Observation analysis of vaccine efficacy in poultry farms: insights from field trials on chicken immunization, International Journal of Molecular Veterinary Research, 14(5): 202-210. http://dx.doi.org/10.5376/ijmvr.2024.14.0023 Mason D., Friedensohn S., Weber C., Jordi C., Wagner B., Meng S., Ehling R., Bonati L., Dahinden J., Gainza P., Correia B., and Reddy S., 2021, Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning, Nature Biomedical Engineering, 5(6): 600-612. https://doi.org/10.1038/s41551-021-00699-9 Matalon O., Perissinotto A., Baruch K., Braiman S., Maor A., Yoles E., Wilczynski E., Nevo U., and Priel A., 2025, Agent-based modeling for personalized prediction of an experimental immune response to immunotherapeutic antibodies, PLoS One, 20(6): e0324618. https://doi.org/10.1371/journal.pone.0324618 Miroshnichenko M., Kolpakov F., and Akberdin I., 2025, A modular mathematical model of the immune response for investigating the pathogenesis of infectious diseases, Viruses, 17(5): 589. https://doi.org/10.3390/v17050589 Moise L., Gutiérrez A., Kibria F., Martin R., Tassone R., Liu R., Terry F., Martin B., and De Groot A., 2015, IVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines, Human Vaccines & Immunotherapeutics, 11(9): 2312-2321. https://doi.org/10.1080/21645515.2015.1061159 Nag R., Srivastava S., Rizvi S., Ahmed S., and Raza S., 2025, Innovations in vaccine design: computational tools and techniques, In: Advances in Pharmacology, Academic Press, 103: 375-391. https://doi.org/10.1016/bs.apha.2025.01.015 Oli A., Obialor W., Ifeanyichukwu M., Odimegwu D., Okoyeh J., Emechebe G., Adejumo S., and Ibeanu G., 2020, Immunoinformatics and vaccine development: an overview, ImmunoTargets and Therapy, 2020: 13-30.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==