Computational Molecular Biology 2024, Vol.14, No.5, 220-228 http://bioscipublisher.com/index.php/cmb 227 Campbell P., Getz G., Stuart J., Korbel J., Stein L., and I., 2020, Pan-cancer analysis of whole genomes, Nature, 578: 82-93. https://doi.org/10.1038/s41586-020-1969-6 Demirel H.C., Arici M.K., and Tuncbag N., 2021, Computational approaches leveraging integrated connections of multi-omic data toward clinical applications, Molecular Omics, 18(1): 7-18. https://doi.org/10.1039/d1mo00158b Ding D.Y., 2024, The role and challenges of genome-wide association studies in revealing crop genetic diversity, Bioscience Method, 14(1): 8-19. https://doi.org/10.5376/bm.2024.15.0002 Durek P., Nordström K., Gasparoni G., Salhab A., Kressler C., Almeida M., Bassler K., Ulas T., Schmidt F., Xiong J., Glažar P., Klironomos F., Sinha A., Kinkley S., Yang X., Arrigoni L., Amirabad A., Ardakani F., Feuerbach L., Gorka O., Ebert P., Müller F., Li N., Frischbutter S., Schlickeiser S., Cendón C., Fröhler S., Felder B., Gasparoni N., Imbusch C., Hutter B., Zipprich G., Tauchmann Y., Reinke S., Wassilew G., Hoffmann U., Richter A., Sieverling L., Chang H., Syrbe U., Kalus U., Eils J., Brors B., Manke T., Ruland J., Lengauer T., Rajewsky N., Chen W., Dong J., Sawitzki B., Chung H., Rosenstiel P., Schulz M., Schultze J., Radbruch A., Walter J., Hamann A., and Polansky J., 2016, Epigenomic profiling of human CD4+ T cells supports a linear differentiation model and highlights molecular regulators of memory development, Immunity, 45(5): 1148-1161. https://doi.org/10.1016/j.immuni.2016.10.022 Duruflé H., Selmani M., Ranocha P., Jamet E., Dunand C., and Déjean S., 2020, A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis, Briefings in Bioinformatics, 22(3): bbaa166. https://doi.org/10.1093/bib/bbaa166 Gopi L.K., and Kidder B.L., 2021, Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatin domains, Nature Communications, 12(1): 1419. https://doi.org/10.1038/s41467-021-21707-1 Gusev A., Ko A., Shi H., Bhatia G., Chung W., Penninx B., Jansen R., Geus E., Boomsma D., Wright F., Sullivan P., Nikkola E., Alvarez M., Civelek M., Lusis A., Lehtimäki T., Raitoharju E., Kähönen M., Seppälä I., Raitakari O., Kuusisto J., Laakso M., Price A., Pajukanta P., and Pasaniuc B., 2015, Integrative approaches for large-scale transcriptome-wide association studies, Nature Genetics, 48: 245-252. https://doi.org/10.1101/024083 Jiménez-Jiménez V., Martí-Gómez C., Pozo M.A., Lara-Pezzi E., and Sánchez-Cabo F., 2021, Bayesian inference of gene expression, Bioinformatics, 2021: 65-87. https://doi.org/10.36255/EXONPUBLICATIONS.BIOINFORMATICS.2021.CH5 Karczewski K., and Snyder M., 2018, Integrative omics for health and disease, Nature Reviews Genetics, 19: 299-310. https://doi.org/10.1038/nrg.2018.4 Knoch D., Meyer R.C., Heuermann M.C., Riewe D., Peleke F.F., Szymański J., Abbadi A., Snowdon R., and Altmann T., 2023, Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola, The Plant Journal: For Cell and Molecular Biology, 117(3): 713-728. https://doi.org/10.1111/tpj.16524 Kulis M., and Martín-Subero J., 2022, Integrative epigenomics in chronic lymphocytic leukaemia: Biological insights and clinical applications, British Journal of Haematology, 200: 280-290. https://doi.org/10.1111/bjh.18465 Kumar D., Bansal G., Narang A., Basak T., Abbas T., and Dash D., 2016, Integrating transcriptome and proteome profiling: strategies and applications, Proteomics, 16(19): 2533-2544. https://doi.org/10.1002/pmic.201600140 Mason J., 2024 Multiplex immunofluorescence in colorectal cancer: a retrospective analysis from scot and quasar 2 trials, Cancer Genetics and Epigenetics, 12(1): 66-69. https://doi.org/10.5376/cge.2024.12.0008 Nalbantoğlu S., and Karadag A., 2021, Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: paving the way toward integrative multiomics, Journal of Pharmaceutical and Biomedical Analysis, 199: 114031. https://doi.org/10.1016/j.jpba.2021.114031 Qin J., Yan B., Hu Y.H., Wang P.W., and Wang J.W., 2016, Applications of integrative OMICs approaches to gene regulation studies, Quantitative Biology, 4(4): 283-301. https://doi.org/10.1007/s40484-016-0085-y Randhawa V., and Pathania S., 2020, Advancing from protein interactomes and gene co-expression networks towards multi-omics-based composite networks: approaches for predicting and extracting biological knowledge, Briefings in Functional Genomics, 19(5-6): 364-376. https://doi.org/10.1093/bfgp/elaa015 Reel P.S., Reel S., Pearson E., Trucco E., and Jefferson E., 2021, Using machine learning approaches for multi-omics data analysis: a review, Biotechnology Advances, 49: 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 Stuart T., and Satija R., 2019, Integrative single-cell analysis, Nature Reviews Genetics, 20: 257-272. https://doi.org/10.1038/s41576-019-0093-7
RkJQdWJsaXNoZXIy MjQ4ODYzNA==