CMB_2024v14n5

Computational Molecular Biology 2024, Vol.14, No.5, 191-201 http://bioscipublisher.com/index.php/cmb 200 Hong Y., Zhang H., Huang L., Li D., and Song F., 2016, Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice, Frontiers in Plant Science, 7: 4. https://doi.org/10.3389/fpls.2016.00004 Hsu P.K., Dubeaux G., Takahashi Y., and Schroeder J.I., 2021, Signaling mechanisms in abscisic acid-mediated stomatal closure, The Plant Journal: For Cell and Molecular Biology, 105(2): 307-321. https://doi.org/10.1111/tpj.15067 Jangam A.P., Pathak R.R., and Raghuram N., 2016, Microarray analysis of rice D1 (RGA1) mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought salinity feat and cold, Frontiers in Plant Science, 7: 11. https://doi.org/10.3389/fpls.2016.00011 Jogaiah S., Govind S.R., and Tran L.S.,2013, Systems biology-based approaches toward understanding drought tolerance in food crops, Critical Reviews in Biotechnology, 33(1): 23-39. https://doi.org/10.3109/07388551.2012.659174 Kattan R.E., Ayesh D., and Wang W., 2023, Analysis of affinity purification-related proteomic data for studying protein-protein interaction networks in cells, Briefings in Bioinformatics, 24(2): bbad010. https://doi.org/10.1093/bib/bbad010 Li H., Jiang S., Li C., Liu L., Lin Z., He H., Deng X.W., Zhang Z., and Wang X., 2020, The hybrid protein interactome contributes to rice heterosis as epistatic effects, The Plant Journal: For Cell and Molecular Biology, 102(1): 116-128. https://doi.org/10.1111/tpj.14616 Li N., Zhang S., Liang Y.J., Qi Y.H., Chen J., Zhu W.N., and Zhang L.S., 2018, Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivumL.) genotypes, Journal of Proteomics, 172: 122-142. https://doi.org/10.1016/j.jprot.2017.09.016 Liu Y., Lu S., Liu K., Wang S., Huang L., and Guo L., 2019, Proteomics: a powerful tool to study plant responses to biotic stress, Plant Methods, 15(1): 135. https://doi.org/10.1186/s13007-019-0515-8 Maksup S., Roytrakul S., and Supaibulwatana K., 2012, Physiological and comparative proteomic analyses of Thai jasmine rice and two check cultivars in response to drought stress, Journal of Plant Interactions, 9(1): 43-55. https://doi.org/10.1080/17429145.2012.752042 Mirzaei M., Soltani N., Sarhadi E., Pascovici D., Keighley T., Salekdeh G.H., Haynes P.A., and Atwell B.J., 2012, Shotgun proteomic analysis of long-distance drought signaling in rice roots, Journal of Proteome Research, 11(1): 348-358. https://doi.org/10.1021/pr2008779 Pant B.D., Lee S., Lee H.K., Krom N., Pant P., Jang Y., and Mysore K.S., 2022, Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice, Plant Physiology, 189(2): 988-1004. https://doi.org/10.1093/plphys/kiac078 Paul S., Gayen D., Datta S.K., and Datta K., 2015, Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress, Plant Science: an International Journal of Experimental Plant Biology, 234: 133-143. https://doi.org/10.1016/j.plantsci.2015.02.006 Peleg Z., and Blumwald E., 2011, Hormone balance and abiotic stress tolerance in crop plants, Current Opinion in Plant Biology, 14(3): 290-295. https://doi.org/10.1016/j.pbi.2011.02.001 Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B., and Bennett J., 2002, A proteomic approach to analyzing drought- and salt-responsiveness in rice, Field Crops Research, 76: 199-219. https://doi.org/10.1016/S0378-4290(02)00040-0 Selamat N., and Nadarajah K.K., 2021, Meta-analysis of quantitative traits loci (QTL) identified in drought response in rice (Oryza sativa L.), Plants (Basel Switzerland), 10(4): 716. https://doi.org/10.3390/plants10040716 Seo J.S Joo J., Kim M.J., Kim Y.K., Nahm B.H., Song S.I., Cheong J.J., Lee J.S., Kim J.K., and Choi Y.D., 2011, OsbHLH148 a basic helix-loop-helix protein interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice, The Plant Journal: For Cell and Molecular Biology, 65(6): 907-921. https://doi.org/10.1111/j.1365-313X.2010.04477.x Sharma E., Bhatnagar A., Bhaskar A., Majee S.M., Kieffer M., Kepinski S., Khurana P., and Khurana J.P., 2023, Stress induced F-Box protein coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice, Plant Cell and Environment, 46(4): 1207-1231. https://doi.org/10.1111/pce.14496 Shu L., Lou Q., Ma C., Ding W., Zhou J., Wu J., Feng F., Lu X., Luo L., Xu G., and Mei H., 2011, Genetic proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought, Proteomics, 11(21): 4122-4138. https://doi.org/10.1002/pmic.201000485 Shi F., Yang X., Zeng H., Guo L., and Qiu D., 2018, Label-free quantitative proteomic analysis revealed a positive effect of ectopic over-expression of PeaT1 from alternaria tenuissima on rice (Oryza sativa) response to drought, 3 Biotech, 8(11): 480. https://doi.org/10.1007/s13205-018-1507-5 Sircar S., and Parekh N., 2019, Meta-analysis of drought-tolerant genotypes in Oryza sativa: a network-based approach, PLoS ONE, 14(5): e0216068. https://doi.org/10.1371/journal.pone.0216068

RkJQdWJsaXNoZXIy MjQ4ODYzNA==