CMB_2024v14n3

Computational Molecular Biology 2024, Vol.14, No.3, 115-124 http://bioscipublisher.com/index.php/cmb 123 Abramov Y.A., Sun G., and Zeng Q., 2022, Emerging landscape of computational modeling in pharmaceutical development, Journal of Chemical Information and Modeling, 62(5): 1160-1171. https://doi.org/10.1021/acs.jcim.1c01580 Agamah F.E., Mazandu G.K., Hassan R., Bope C.D., Thomford N.E., Ghansah A., and Chimusa E.R., 2019, Computational in silico methods in drug target and lead prediction, Briefings in Bioinformatics, 21(5): 1663-1675. https://doi.org/10.1093/bib/bbz103 Banegas-Luna A.J., Imbernón B., Castro A., Pérez-Garrido A., Cerón-Carrasco J.P., Gesing S., Merelli I., D'Agostino D., and Pérez‐Sánchez H., 2018, Advances in distributed computing with modern drug discovery, Expert Opinion on Drug Discovery, 14(1): 9-22. https://doi.org/10.1080/17460441.2019.1552936 Barbault F., and Maurel F., 2015, Simulation with quantum mechanics/molecular mechanics for drug discovery, Expert Opinion on Drug Discovery, 10(10): 1047-1057. https://doi.org/10.1517/17460441.2015.1076389 Batool M., Ahmad B., and Choi S., 2019, A structure-based drug discovery paradigm, International Journal of Molecular Sciences, 20(11): 2783. https://doi.org/10.3390/ijms20112783 Blunt N., Camps J., Crawford O., Izs'ak R., Leontica S., Mirani A., Moylett A., Scivier S., Sunderhauf C., Schopf P., Taylor J., and Holzmann N., 2022, Perspective on the current state-of-the-art of quantum computing for drug discovery applications, Journal of Chemical Theory and Computation, 18: 7001-7023. https://doi.org/10.1021/acs.jctc.2c00574 Born J., and Manica M., 2021, Trends in deep learning for property-driven drug design, Current Medicinal Chemistry, 28(38): 7862-7886. https://doi.org/10.2174/0929867328666210729115728 Cascella M., Peraro M., and Vivo M., 2015, Computational chemistry strategies tackling function and inhibition of pharmaceutically relevant targets, Frontiers in Computational Chemistry, Bentham Science Publishers, 2015: 290-343. https://doi.org/10.1016/B978-1-60805-865-5.50008-3 Castelli M., Serapian S., Marchetti F., Triveri A., Pirota V., Torielli L., Collina S., Doria F., Freccero M., and Colombo G., 2021, New perspectives in cancer drug development: computational advances with an eye to design, RSC Medicinal Chemistry, 12(9): 1491-1502. https://doi.org/10.1039/d1md00192b Cavalli A., Spitaleri A., Saladino G., and Gervasio F., 2015, Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms, Accounts of Chemical Research, 48(2): 277-285. https://doi.org/10.1021/ar500356n Cova T.F., and Pais A.A., 2019, Deep learning for deep chemistry: optimizing the prediction of chemical patterns, Frontiers in Chemistry, 7: 809. https://doi.org/10.3389/fchem.2019.00809 Cox P., and Gupta R., 2022, Contemporary computational applications and tools in drug discovery, ACS Medicinal Chemistry Letters, 13(7): 1016-1029. https://doi.org/10.1021/acsmedchemlett.1c00662 Cui W.Q., Aouidate A., Wang S.G., Yu Q.L., Li Y.H., and Yuan S.G., 2020, Discovering anti-cancer drugs via computational methods, Frontiers in Pharmacology, 11: 733. https://doi.org/10.3389/fphar.2020.00733 Decherchi S., and Cavalli A., 2020, Thermodynamics and kinetics of drug-target binding by molecular simulation, Chemical Reviews, 120: 12788-12833. https://doi.org/10.1021/acs.chemrev.0c00534 Duay S.S., Yap R.S.Y., Gaitano A.L., Santos J.A.A., and Macalino S.J.Y., 2023, Roles of virtual screening and molecular dynamics simulations in discovering and understanding antimalarial drugs, International Journal of Molecular Sciences, 24(11): 9289. https://doi.org/10.3390/ijms24119289 Durrant J.D., and McCammon J.A., 2011, Molecular dynamics simulations and drug discovery, BMC Biology, 9: 1-9. https://doi.org/10.1186/1741-7007-9-71 Engkvist O., Norrby P.O., Selmi N., Lam Y., Peng Z., Sherer E.C., Amberg W., Erhard T., and Smyth L.A., 2018, Computational prediction of chemical reactions: current status and outlook, Drug Discovery Today, 23(6): 1203-1218. https://doi.org/10.1016/j.drudis.2018.02.014 Ganesan A., Coote M., and Barakat K., 2017, Molecular dynamics-driven drug discovery: leaping forward with confidence, Drug Discovery Today, 22(2): 249-269. https://doi.org/10.1016/j.drudis.2016.11.001 Han R., Yoon H., Kim G., Lee H., and Lee Y., 2023, Revolutionizing medicinal chemistry: the application of artificial intelligence (AI) in early drug discovery, Pharmaceuticals, 16(9): 1259. https://doi.org/10.3390/ph16091259 Hasan M.R., Alsaiari A.A., Fakhurji B.Z., Molla M.H.R., Asseri A.H., Sumon M.M.A., Park M.N., Ahammad F., and Kim B., 2022, Application of mathematical modeling and computational tools in the modern drug design and development process, Molecules, 27(13): 4169. https://doi.org/10.3390/molecules27134169 Huang Z., Yao X., and Gu R., 2021, Editorial: computational approaches in drug discovery and precision medicine, Frontiers in Chemistry, 8: 639449. https://doi.org/10.3389/fchem.2020.639449

RkJQdWJsaXNoZXIy MjQ4ODYzNA==