CMB_2024v14n3

Computational Molecular Biology 2024, Vol.14, No.3, 106-114 http://bioscipublisher.com/index.php/cmb 114 Ntoutsi E., Fafalios P., Gadiraju U., Iosifidis V., Nejdl W., Vidal M., Ruggieri S., Turini F., Papadopoulos S., Krasanakis E., Kompatsiaris I., Kinder-Kurlanda K., Wagner C., Karimi F., Fernández M., Alani H., Berendt, B., Kruegel T., Heinze C., Broelemann K., Kasneci G., Tiropanis T., and Staab S., 2020, Bias in data‐driven artificial intelligence systems-an introductory survey, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3): e1356. https://doi.org/10.1002/widm.1356 Rakocevic G., Semenyuk V., Lee W., Spencer J., Browning J., Johnson I., Arsenijević V., Nadj J., Ghose K., Suciu M., Ji S., Demi̇r G., Li L., Toptas B., Dolgoborodov A., Pollex B., Spulber I., Glotova I., Kómár P., Stachyra A., Li Y., Popovic M., Källberg M., Jain A., and Kural D., 2019, Fast and accurate genomic analyses using genome graphs, Nature Genetics, 51: 354-362. https://doi.org/10.1038/s41588-018-0316-4 Reddy A., Flemming D., Selitsky S., Pavel A., Alexe G., and Bhanot G., 2020, Abstract 858: PrismML: a machine learning platform to query genotype-phenotype patterns in large genomics studies, Cancer Research, 80: 858-858. https://doi.org/10.1158/1538-7445.am2020-858 Reel P.S., Reel S., Pearson E., Trucco E., and Jefferson E., 2021, Using machine learning approaches for multi-omics data analysis: a review, Biotechnology Advances, 49: 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 Routhier E., and Mozziconacci J., 2022, Genomics enters the deep learning era, PeerJ, 10: e13613. https://doi.org/10.7717/peerj.13613 Saha, G., Babur M., Khan M., Saha H., Kumar D., 2023, Integrative analysis of multi-omics data with deep learning: challenges and opportunities in bioinformatics, Journal of Propulsion Technology, 23(1): bbab454. https://doi.org/10.52783/tjjpt.v44.i3.488 Schmidt B., and Hildebrandt A., 2020, Deep learning in next-generation sequencing, Drug Discovery Today, 26: 173-180. https://doi.org/10.1016/j.drudis.2020.10.002 Talukder A., Barham C., Li X., and Hu H., 2020, Interpretation of deep learning in genomics and epigenomics, Briefings in Bioinformatics, 22(3): bbaa177. https://doi.org/10.1093/bib/bbaa177 Torkzadehmahani R., Nasirigerdeh R., Blumenthal D., Kacprowski T., List M., Matschinske J., Späth J., Wenke N., Bihari B., Frisch T., Hartebrodt A., Hauschild A., Heider D., Holzinger A., Hötzendorfer W., Kastelitz M., Mayer R., Nogales C., Pustozerova A., Röttger R., Schmidt H., Schwalber A., Tschohl C., Wohner A., and Baumbach J., 2020, Privacy-preserving artificial intelligence techniques in biomedicine, Methods of Information in Medicine, 61: e12-e27. https://doi.org/10.1055/s-0041-1740630 Vadapalli S., Abdelhalim H., Zeeshan S., and Ahmed Z., 2022, Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine, Briefings in Bioinformatics, 23(5): bbac191. https://doi.org/10.1093/bib/bbac191 VanRaden P., Bickhart D., and O’Connell J., 2019, Calling known variants and identifying new variants while rapidly aligning sequence data, Journal of Dairy Science, 102(4): 3216-3229. https://doi.org/10.3168/jds.2018-15172 Wood A., Najarian K., and Kahrobaei D., 2020, Homomorphic encryption for machine learning in medicine and bioinformatics, ACM Computing Surveys (CSUR), 53: 1-35. https://doi.org/10.1145/3394658 Wörheide M., Krumsiek J., Kastenmüller G., and Arnold M., 2021, Multi-omics integration in biomedical research-a metabolomics-centric review, Analytica Chimica Acta, 1141: 144-162. https://doi.org/10.1016/j.aca.2020.10.038 Wu J., and Zhao, Y., 2019, Machine learning technology in the application of genome analysis: a systematic review, Gene, 705: 149-156. https://doi.org/10.1016/j.gene.2019.04.062 Yukselen O., Turkyilmaz O., Ozturk A., Garber M., and Kucukural A., 2020, Dolphin next: a distributed data processing platform for high throughput genomics, BMC Genomics, 21: 1-16. https://doi.org/10.1186/s12864-020-6714-x Zou J., Huss M., Abid A., Mohammadi P., Torkamani A., and Telenti A., 2018, A primer on deep learning in genomics, Nature Genetics, 51(1): 12-18. https://doi.org/10.1038/s41588-018-0295-5

RkJQdWJsaXNoZXIy MjQ4ODYzNA==