CMB_2024v14n3

Computational Molecular Biology 2024, Vol.14, No.3, 106-114 http://bioscipublisher.com/index.php/cmb 113 References Abbas Z., Tayara H., and Chong K., 2021, ZayyuNet–a unified deep learning model for the identification of epigenetic modifications using raw genomic sequences, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19: 2533-2544. https://doi.org/10.1109/TCBB.2021.3083789 Afgan E., Sloggett C., Goonasekera N., Makunin I., Benson D., Crowe M., Gladman S., Kowsar Y., Pheasant M., Horst R., and Lonie A., 2015, Genomics virtual laboratory: a practical bioinformatics workbench for the cloud, PLoS ONE, 10(10): e0140829. https://doi.org/10.1371/journal.pone.0140829 Angermueller C., Pärnamaa T., Parts L., and Stegle O., 2016, Deep learning for computational biology, Molecular Systems Biology, 12(7): 878. https://doi.org/10.15252/msb.20156651 Avsec Ž., Agarwal V., Visentin D., Ledsam J., Grabska-Barwinska A., Taylor K., Assael Y., Jumper J., Kohli P., and Kelley D., 2021, Effective gene expression prediction from sequence by integrating long-range interactions, Nature Methods, 18: 1196-1203. https://doi.org/10.1038/s41592-021-01252-x Azencott C.A., 2018, Machine learning and genomics: precision medicine versus patient privacy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128): 20170350. https://doi.org/10.1098/rsta.2017.0350 Benkirane H., Pradat Y., Michiels S., and Cournède P.H., 2023, CustOmics: a versatile deep-learning based strategy for multi-omics integration, PLOS Computational Biology, 19(3): e1010921. https://doi.org/10.1371/journal.pcbi.1010921 Botes M., 2023, Regulating scientific and technological uncertainty: the precautionary principle in the context of human genomics and AI, South African Journal of Science, 119(5-6): 1-6. https://doi.org/10.17159/sajs.2023/15037 Camacho D., Collins K., Powers R., Costello J., and Collins J., 2018, Next-generation machine learning for biological networks, Cell, 173: 1581-1592. https://doi.org/10.1016/j.cell.2018.05.015 Char D., 2022, Challenges of local ethics review in a global healthcare AI market, The American Journal of Bioethics, 22: 39-41. https://doi.org/10.1080/15265161.2022.2055214 Gedefaw L.F., Liu C., Ip R.K.L., Tse H.F., Yeung M.H.Y., Yip S.L., and Huang C., 2023, Artificial intelligence-assisted diagnostic cytology and genomic testing for hematologic disorders, Cells, 12(13): 1755. https://doi.org/10.3390/cells12131755 Jun G., Wing M.K., Abecasis G.R., and Kang H.M., 2015, An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data, Genome Research, 25(6): 918-925. https://doi.org/10.1101/gr.176552.114 Kang M., Ko E., and Mersha T.B., 2021, A roadmap for multi-omics data integration using deep learning, Briefings in Bioinformatics, 23(1): bbab454. https://doi.org/10.1093/bib/bbab454. Karim M.R., Beyan O., Zappa A., Costa I.G., Rebholz-Schuhmann D., Cochez M., and Decker S., 2020, Deep learning-based clustering approaches for bioinformatics, Briefings in Bioinformatics, 22(1): 393-415. https://doi.org/10.1093/bib/bbz170 Kelley D.R., 2019, Cross-species regulatory sequence activity prediction, PLoS Computational Biology, 16(7): e1008050. https://doi.org/10.1371/journal.pcbi.1008050 Kelley D., Reshef Y., Bileschi M., Belanger D., McLean C., and Snoek J., 2017, Sequential regulatory activity prediction across chromosomes with convolutional neural networks, Genome Research, 28: 739-750. https://doi.org/10.1101/161851 Koumakis L., 2020, Deep learning models in genomics; are we there yet, Computational and Structural Biotechnology Journal, 18: 1466-1473. https://doi.org/10.1016/j.csbj.2020.06.017 Langmead B., and Nellore A., 2018, Cloud computing for genomic data analysis and collaboration, Nature Reviews Genetics, 19: 208-219. https://doi.org/10.1038/nrg.2017.113. Leung M., Delong A., Alipanahi B., and Frey B., 2016, Machine learning in genomic medicine: a review of computational problems and data sets, Proceedings of the IEEE, 104: 176-197. https://doi.org/10.1109/JPROC.2015.2494198 Li Y., Wu F., and Ngom A., 2016, A review on machine learning principles for multi-view biological data integration, Briefings in Bioinformatics, 19: 325-340. https://doi.org/10.1093/bib/bbw113 Libbrecht M., and Noble W., 2015, Machine learning applications in genetics and genomics, Nature Reviews Genetics, 16: 321-332. https://doi.org/10.1038/nrg3920 Liu J., Li J., Wang H., and Yan J., 2020, Application of deep learning in genomics, Science China Life Sciences, 63: 1860-1878. https://doi.org/10.1007/s11427-020-1804-5 Mirza B., Wang W., Wang J., Choi H., Chung N.C., and Ping P., 2019, Machine learning and integrative analysis of biomedical big data, Genes, 10(2): 87. https://doi.org/10.3390/genes10020087 Nicora G., Vitali F., Dagliati A., Geifman N., and Bellazzi R., 2020, Integrated multi-omics analyses in oncology: a review of machine learning methods and tools, Frontiers in Oncology, 10: 1030. https://doi.org/10.3389/fonc.2020.01030

RkJQdWJsaXNoZXIy MjQ4ODYzNA==