Computational Molecular Biology 2024, Vol.14, No.3, 97-105 http://bioscipublisher.com/index.php/cmb 105 Perez-Riverol Y., and Moreno P., 2019, Scalable data analysis in proteomics and metabolomics using biocontainers and workflows engines, Proteomics, 20(9): 1900147. https://doi.org/10.1002/pmic.201900147 Rahman A., 2019, Statistics-based data preprocessing methods and machine learning algorithms for big data analysis, International Journal of Artificial Intelligence, 17: 44-65. Schulz W.L., Durant T.J.S., Siddon A.J., and Torres R., 2016, Use of application containers and workflows for genomic data analysis, Journal of Pathology Informatics, 7(1): 53. https://doi.org/10.4103/2153-3539.197197 Shukla R., Yadav A.K., and Singh T.R., 2021, Application of deep learning in biological big data analysis, Large-Scale Data Streaming, Processing, and Blockchain Security, 2024: 225-250. https://doi.org/10.4018/978-1-7998-3444-1.ch006 Tariq M., Haseeb M., Aledhari M., Razzak R., Parizi R., and Saeed F., 2020, Methods for proteogenomics data analysis, challenges, and scalability bottlenecks: a survey, IEEE Access: Practical Innovations, Open Solutions, 9: 5497-5516. https://doi.org/10.1109/ACCESS.2020.3047588 Tonidandel S., King E., and Cortina J., 2018, Big data methods, Organizational Research Methods, 21: 525-547. https://doi.org/10.1177/1094428116677299 Wanichthanarak K., Fan S., Grapov D., Barupal D., and Fiehn O., 2017, Metabox: a toolbox for metabolomic data analysis, interpretation and integrative exploration, PLoS ONE, 12(1): e0171046. https://doi.org/10.1371/journal.pone.0171046 Wu X., Zhu X., Wu G., and Ding W., 2014, Data mining with big data, IEEE Transactions on Knowledge and Data Engineering, 26: 97-107. https://doi.org/10.1109/TKDE.2013.109 Xia J., Wang J., and Niu S., 2020, Research challenges and opportunities for using big data in global change biology, Global Change Biology, 26: 6040-6061. https://doi.org/10.1111/gcb.15317 Yang A., Troup M., and Ho J., 2017, Scalability and validation of big data bioinformatics software, Computational and Structural Biotechnology Journal, 15: 379-386. https://doi.org/10.1016/j.csbj.2017.07.002 Yeh C.W., Huang C.W., Yang C.L., and Wang Y.T., 2023, A high performance computing platform for big biological data analysis, 2023 9th International Conference on Applied System Innovation (ICASI), 2023: 68-70. https://doi.org/10.1109/ICASI57738.2023.10179527 Yin Z., Lan H., Tan G., Lu M., Vasilakos A., and Liu W., 2017, Computing platforms for big biological data analytics: perspectives and challenges, Computational and Structural Biotechnology Journal, 15: 403-411. https://doi.org/10.1016/j.csbj.2017.07.004 Younas M., 2019, Research challenges of big data, Service Oriented Computing and Applications, 13: 105-107. https://doi.org/10.1007/s11761-019-00265-x
RkJQdWJsaXNoZXIy MjQ4ODYzNA==