CMB_2024v14n2

Computational Molecular Biology 2024, Vol.14, No.2, 84-94 http://bioscipublisher.com/index.php/cmb 94 Monneret G., Jaffrézic F., Rau A., Zerjal T., and Nuel G., 2017, Identification of marginal causal relationships in gene networks from observational and interventional expression data, PLoS ONE, 12(3): e0171142. https://doi.org/10.1371/journal.pone.0171142 Narimani Z., Beigy H., Ahmad A., Masoudi-Nejad A., and Fröhlich H., 2017, Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data, PLoS ONE, 12(2): e0171240. https://doi.org/10.1371/journal.pone.0171240 Nguyen T., Tagett R., Diaz D., and Drăghici S., 2017, A novel approach for data integration and disease subtyping, Genome Research, 27: 2025-2039. https://doi.org/10.1101/gr.215129.116 Nicora G., Vitali F., Dagliati A., Geifman N., and Bellazzi R., 2020, Integrated multi-omics analyses in oncology: a review of machine learning methods and tools, Frontiers in Oncology, 10: 1030. https://doi.org/10.3389/fonc.2020.01030 Park C., Yoon Y., Oh M., Yu S., and Ahn J., 2017, Systematic identification of differential gene network to elucidate Alzheimer's disease, Expert Systems with Applications, 85: 249-260. https://doi.org/10.1016/j.eswa.2017.05.042 Ribeiro A.H., Soler J.M.P., Neto E.C., and Fujita A., 2016, Causal inference and structure learning of genotype-phenotype networks using genetic variation, Systems Genetics, 2016: 89-143. https://doi.org/10.1007/978-3-319-41279-5_3 Schmitt P., Sorin B., Frouté T., et al., 2023, Grenadine: a data-driven python library to infer gene regulatory networks from gene expression data, Genes, 14(2): 269. https://doi.org/10.3390/genes14020269 Shojaee A., and Huang S.C., 2023, Robust discovery of gene regulatory networks from single-cell gene expression data by causal inference using composition of transactions, Briefings in Bioinformatics, 24(6): bbad370. https://doi.org/10.1093/bib/bbad370 Tuncbag N., Gosline S.J.C., Kedaigle A, J., Soltis A., Gitter A., and Fraenkel E., 2016, Network-based interpretation of diverse high-throughput datasets through the omics integrator software package, PLoS Computational Biology, 12(4): e1004879. https://doi.org/10.1371/journal.pcbi.1004879 Villaverde A, F., Becker K., and Banga J., 2018, Premer: a tool to infer biological networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15: 1193-1202. https://doi.org/10.1109/TCBB.2017.2758786 Wallace B.C., Lajeunesse M.J., Dietz G., Dahabreh I.J., Trikalinos T.A., Schmid C.H., and Gurevitch J., 2017, Openmee: intuitive open-source software for meta-analysis in ecology and evolution, Methods in Ecology and Evolution, 8(8): 941-947. https://doi.org/10.1111/2041-210X.12708 Wang L., Audenaert P., and Michoel T., 2018, High-dimensional bayesian network inference from systems genetics data using genetic node ordering, Frontiers in Genetics, 10: 1196. https://doi.org/10.3389/fgene.2019.01196 Xue Y.F., Cooper G.F., Cai C.H., Lu S.J., Hu B.L., Ma X.J., and Lu X.H., 2019, Tumour-specific causal inference discovers distinct disease mechanisms underlying cancer subtypes, Scientific Reports, 9(1): 13225. https://doi.org/10.1038/s41598-019-48318-7 Yuan Y., and Bar-Joseph Z., 2018, Deep learning for inferring gene relationships from single-cell expression data, Proceedings of the National Academy of Sciences, 116: 27151-27158. https://doi.org/10.1073/pnas.1911536116 Zhang D., Jiang Z.L., Chen C.C., Xu Z.Y., Wang X.J., and Zhang M., 2023, Signet: transcriptome-wide causal inference for gene regulatory networks, Research Square, 13(1): 19371. https://doi.org/10.21203/rs.3.rs-3180043/v1 Zhang Y.L., Li Q.C., Chang X., Chen L.N., and Liu X.P., 2022, Causal network inference based on cross-validation predictability, bioRxiv, 2022: 2022.12. 11.519942. https://doi.org/10.1101/2022.12.11.519942 Zhao J., 2023, Computational and statistical methods for data integration and causal inference, VLDB Endowment, 16: 2659-2665. https://doi.org/10.14778/3603581.3603602

RkJQdWJsaXNoZXIy MjQ4ODYzNA==