CMB_2024v14n2

Computational Molecular Biology 2024, Vol.14, No.2, 84-94 http://bioscipublisher.com/index.php/cmb 93 Acknowledgments We deeply appreciate the reviewers' time and effort in providing thoughtful and comprehensive comments. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ahmed S.S., Roy S., and Kalita J., 2020, Assessing the effectiveness of causality inference methods for gene regulatory networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(1): 56-70. https://doi.org/10.1109/TCBB.2018.2853728 Bradley G., and Barrett S.J., 2017, CausalR: extracting mechanistic sense from genome scale data, Bioinformatics, 33(22): 3670-3672. https://doi.org/10.1093/bioinformatics/btx425 Buetti-Dinh A., Herold M.H., Christel S., Hajjami M.E., Delogu F., Ilie O., Bellenberg S., Wilmes P., Poetsch A., Sand W., Vera M., Pivkin I.V., Friedman R., and Dopson M., 2020, Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities, BMC Bioinformatics, 21: 1-15. https://doi.org/10.1186/s12859-019-3337-9 Correa A.R., Alonso P.N., and Hernández R.E., 2022, Multi-omics data integration approaches for precision oncology, Molecular Omics, 18(6): 469-479. https://doi.org/10.1039/D1MO00411E Dibaeinia P., and Sinha S., 2023, Cimla: interpretable AI for inference of differential causal networks, ArXiv, 2304: 12523 https://doi.org/10.48550/arXiv.2304.12523 Fan Z., Kernan K.F., and Benos P.V., 2021, Causal inference using deep-learning variable selection identifies and incorporates direct and indirect causalities in complex biological systems, bioRxiv, 2021: 17.452800. https://doi.org/10.1101/2021.07.17.452800 Farahmand S., O'Connor C., Macoska J., and Zarringhalam K., 2019, Causal inference engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators, Nucleic Acids Research, 47: 11563-11573. https://doi.org/10.1093/nar/gkz1046 Feng K., Jiang H., Yin C., and Sun H., 2023, Gene regulatory network inference based on causal discovery integrating with graph neural network, Quantitative Biology, 11(4): 434-450. https://doi.org/10.1002/qub2.26 Finkle J.D., Wu J.J., and Bagheri N., 2018, Windowed Granger causal inference strategy improves discovery of gene regulatory networks, Proceedings of the National Academy of Sciences, 115: 2252-2257. https://doi.org/10.1073/pnas.1710936115 Furqan M.S., and Siyal M.Y., 2016, Elastic-net copula granger causality for inference of biological networks, PLoS ONE, 11(10): e0165612. https://doi.org/10.1371/journal.pone.0165612 Grassi M., Palluzzi F., and Tarantino B., 2022, Semgraph: an R package for causal network inference of high-throughput data with structural equation models, Bioinformatics, 38(20): 4829-4830. https://doi.org/10.1093/bioinformatics/btac567 Guebila M.B., Wang T., and Lopes-Ramos C., 2022, The network zoo: a multilingual package for the inference and analysis of biological networks, bioRxiv, 2022: 2022.05. 30.494077. https://doi.org/10.1101/2022.05.30.494077 Hill S., Heiser L, M., Cokelaer T., et al., 2016, Inferring causal molecular networks: empirical assessment through a community-based effort, Nature Methods, 13: 310-318. https://doi.org/10.1038/nmeth.3773 Howey R., Clark A.D., Naamane N., Reynard L.N., Pratt A.G., and Cordell H.J., 2021, A nayesian network approach incorporating imputation of missing data enables exploratory analysis of complex causal biological relationships, PLoS Genetics, 17(9): e1009811. https://doi.org/10.1371/journal.pgen.1009811 Lecca P., 2021, Machine learning for causal inference in biological networks: perspectives of this challenge, Frontiers in Bioinformatics, 1: 746712. https://doi.org/10.3389/fbinf.2021.746712 Lee B., Zhang S., Poleksic A., and Xie L., 2020, Heterogeneous multi-layered network model for omics data integration and analysis, Frontiers in Genetics, 10: 381. https://doi.org/10.3389/fgene.2019.01381 Lu J., Dumitrascu B., McDowell I.C., Jo B., Barrera A., Hong L.K., Leichter S.M., Reddy T.E., and Engelhardt B., 2019, Causal network inference from gene transcriptional time-series response to glucocorticoids, bioRxiv, 17(1): e1008223. https://doi.org/10.1101/587170 Miao Z., Humphreys B., McMahon A., and Kim J., 2021, Multi-omics integration in the age of million single-cell data, Nature Reviews Nephrology, 17: 710-724. https://doi.org/10.1038/s41581-021-00463-x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==