CMB_2024v14n2

Computational Molecular Biology 2024, Vol.14, No.2, 64-75 http://bioscipublisher.com/index.php/cmb 75 Olivier M., Asmis R., Hawkins G.A., Howard T.D, and Cox L., 2019, The need for multi-omics biomarker signatures in precision medicine, International Journal of Molecular Sciences, 20(19): 4781. https://doi.org/10.3390/ijms20194781 Pinu F.R., Beale D.J., Paten A.M., Kouremenos K., Swarup S., Schirra H.J., and Wishart D., 2019, Systems biology and multi-omics integration: viewpoints from the metabolomics research community, Metabolites, 9(4): 76. https://doi.org/10.3390/metabo9040076 Raufaste-Cazavieille V., Santiago R., and Droit A., 2022, Multi-omics analysis: paving the path toward achieving precision medicine in cancer treatment and immuno-oncology, Frontiers in Molecular Biosciences, 9: 962743. https://doi.org/10.3389/fmolb.2022.962743 Reel P.S., Reel S., Pearson E., Trucco E., and Jefferson E., 2021, Using machine learning approaches for multi-omics data analysis: a review, Biotechnology Advances, 49: 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 Ritchie M., Holzinger E., Li R., Pendergrass S., and Kim D., 2015, Methods of integrating data to uncover genotype–phenotype interactions, Nature Reviews Genetics, 16: 85-97. https://doi.org/10.1038/nrg3868 Ruiz-Perez D., Lugo-Martinez J., Bourguignon N., Mathee K., Lerner B., Bar-Joseph Z., and Narasimhan G., 2019, Dynamic bayesian networks for integrating multi-omics time series microbiome data, mSystems, 6(2): 10.1128. https://doi.org/10.1128/mSystems.01105-20 Santiago-Rodriguez T.M., and Hollister E.B., 2021, Multi 'omic data integration: a review of concepts considerations and approaches, Seminars in Perinatology, 45(6): 151456. https://doi.org/10.1016/j.semperi.2021.151456 Sokač M., Kjær A., Dyrskjøt L., Haibe-Kains B., Aerts H., and Birkbak N., 2023, Spatial transformation of multi-omics data unlocks novel insights into cancer biology, eLife, 12: RP87133. https://doi.org/10.7554/eLife.87133 Subramanian I., Verma S., Kumar S., Jere A., and Anamika K., 2020, Multi-omics data integration interpretation and its application, Bioinformatics and Biology Insights, 14: 1177932219899051. https://doi.org/10.1177/1177932219899051 Terranova N., and Venkatakrishnan K., 2023, Machine learning in modeling disease trajectory and treatment outcomes: an emerging enabler for model-informed precision medicine, Clinical Pharmacology and Therapeutics, 115(4): 720-726. https://doi.org/10.1002/cpt.3153 Tini G., Marchetti L., Priami C., and Scott-Boyer M., 2019, Multi-omics integration-a comparison of unsupervised clustering methodologies, Briefings in Bioinformatics, 20(4): 1269-1279. https://doi.org/10.1093/bib/bbx167 Turanli B., Karagoz K., Gulfidan G., Sinha R., Mardinoğlu A., and Arğa K., 2019, A network-based cancer drug discovery: from integrated multi-omics approaches to precision medicine, Current Pharmaceutical Design, 24(32): 3778-3790. https://doi.org/10.2174/1381612824666181106095959 Vahabi N., and Michailidis G., 2022, Unsupervised multi-omics data integration methods: a comprehensive review, Frontiers in Genetics, 13: 854752. https://doi.org/10.3389/fgene.2022.854752 Wörheide M., Krumsiek J., Kastenmüller G., and Arnold M., 2021, Multi-omics integration in biomedical research-a metabolomics-centric review, Analytica Chimica Acta, 1141: 144-162. https://doi.org/10.1016/j.aca.2020.10.038 Zhang B., and Kuster B., 2019, Proteomics is not an island: multi-omics integration is the key to understanding biological systems, Molecular and Cellular Proteomics, 18: S1-S4. https://doi.org/10.1074/mcp.E119.001693

RkJQdWJsaXNoZXIy MjQ4ODYzNA==