Computational Molecular Biology 2024, Vol.14, No.2, 64-75 http://bioscipublisher.com/index.php/cmb 74 Bodein A., Scott-Boyer M.P., Périn O., Cao K.A., and Droit A., 2020, Interpretation of network-based integration from multi-omics longitudinal data, Nucleic Acids Research, 50(5): e27-e27. https://doi.org/10.1093/nar/gkab1200 Colomé-Tatché M., and Theis F., 2018, Statistical single cell multi-omics integration, Current Opinion in Systems Biology, 7: 54-59. https://doi.org/10.1016/J.COISB.2018.01.003 Cominetti O., Agarwal S., and Oller-Moreno S., 2023, Editorial: advances in methods and tools for multi-omics data analysis, Frontiers in Molecular Biosciences, 10: 1186822. https://doi.org/10.3389/fmolb.2023.1186822 Demirel H.C., Arici M.K., and Tuncbag N., 2021, Computational approaches leveraging integrated connections of multi-omic data toward clinical applications, Molecular omics, 18(1): 7-18. https://doi.org/10.1039/d1mo00158b Ebrahim A., Brunk E.J., Tan J., O'Brien E., Kim D., Szubin R., Lerman J., Lechner A., Sastry A., Bordbar A., Feist A., and Palsson B., 2016, Multi-omic data integration enables discovery of hidden biological regularities, Nature Communications, 7(1): 13091. https://doi.org/10.1038/ncomms13091 Feldner-Busztin D., Nisantzis P.F., Edmunds S.J., Boza G., Racimo F., Gopalakrishnan S., Limborg M.T., Lahti L., and Polavieja GG.., 2023, Dealing with dimensionality: the application of machine learning to multi-omics data, Bioinformatics, 39(2): btad021. https://doi.org/10.1093/bioinformatics/btad021 Graw S., Chappell K., Washam C.L., Gies A., Bird J., Robeson M.S., and Byrum S., 2020, Multi-omics data integration considerations and study design for biological systems and disease, Molecular Omics, 17(2): 170-185. https://doi.org/10.1039/d0mo00041h Hauptmann T., and Kramer S., 2022, A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction, BMC Bioinformatics, 24(1): 45. https://doi.org/10.1186/s12859-023-05166-7 Jendoubi T., 2021, Approaches to integrating metabolomics and multi-omics data: a primer, Metabolites, 11(3): 184. https://doi.org/10.3390/metabo11030184 Kang M., Ko E., and Mersha T.B., 2021, A roadmap for multi-omics data integration using deep learning, Briefings in Bioinformatics, 23(1): bbab454. https://doi.org/10.1093/bib/bbab454 Kaur P., Singh A., and Chana I., 2021, Computational techniques and tools for omics data analysis: state-of-the-art challenges and future directions, Archives of Computational Methods in Engineering, 28(7): 4595-4631. https://doi.org/10.1007/s11831-021-09547-0 Koppad S., Gkoutos G.V., and Acharjee A., 2021, Cloud computing enabled big multi-omics data analytics, Bioinformatics and Biology Insights, 15: 11779322211035921. https://doi.org/10.1177/11779322211035921 Lee B., Zhang S., Poleksic A., and Xie L., 2020, Heterogeneous multi-layered network model for omics data integration and analysis, Frontiers in Genetics, 10: 381. https://doi.org/10.3389/fgene.2019.01381 Li Y., Wu F.X., and Ngom A., 2016, A review on machine learning principles for multi-view biological data integration, Briefings in Bioinformatics, 19(2): 325-340. https://doi.org/10.1093/bib/bbw113 Manzoni C., Kia D., Vandrovcova J., Hardy J., Wood N., Lewis P., and Ferrari R., 2016, Genome transcriptome and proteome: the rise of omics data and their integration in biomedical sciences, Briefings in Bioinformatics, 19: 286-302. https://doi.org/10.1093/bib/bbw114 Miao B.B., Dong W., Gu Y.X., Han Z.F., Luo X., Ke C.H., and You W.W., 2023, OmicsSuite: a customized and pipelined suite for analysis and visualization of multi-omics big data, Horticulture Research, 10(11): uhad195. https://doi.org/10.1093/hr/uhad195 Miao Z., Humphreys B., McMahon A., and Kim J., 2021, Multi-omics integration in the age of million single-cell data, Nature Reviews Nephrology, 17: 710-724. https://doi.org/10.1038/s41581-021-00463-x Misra B.B., Langefeld C., Olivier M., and Cox L.A., 2019, Integrated omics: tools advances and future approaches, Journal of Molecular Endocrinology, 62(1): R21-R45. https://doi.org/10.1530/JME-18-0055 Nicora G., Vitali F., Dagliati A., Geifman N., and Bellazzi R., 2020, Integrated multi-omics analyses in oncology: a review of machine learning methods and tools, Frontiers in Oncology, 10: 1030 https://doi.org/10.3389/fonc.2020.01030 Ning L., and He H.X., 2021, Topic evolution analysis for omics data integration in cancers, Frontiers in Cell and Developmental Biology, 9: 631011. https://doi.org/10.3389/fcell.2021.631011
RkJQdWJsaXNoZXIy MjQ4ODYzNA==