Computational Molecular Biology 2024, Vol.14, No.2, 45-53 http://bioscipublisher.com/index.php/cmb 52 Grob A., Kracher B., Kraus J.M., Kühlwein S.D., Pfister A.S., Wiese S., Luckert K., Pötz O., Joos T., Daele D., Raedt L., Kühl M., and Kestler H., 2019, Representing dynamic biological networks with multi-scale probabilistic models, Communications Biology, 2(1): 21. https://doi.org/10.1038/s42003-018-0268-3. Hinkelmann F., Murrugarra D., Jarrah A., and Laubenbacher R., 2010, A mathematical framework for agent based models of complex biological networks, Bulletin of Mathematical Biology, 73: 1583-1602. https://doi.org/10.1007/S11538-010-9582-8. Hollingsworth S., and Dror R., 2018, Molecular dynamics simulation for all, Neuron, 99: 1129-1143. https://doi.org/10.1016/j.neuron.2018.08.011. Jolly M.K., and Roy S., 2022, Editorial: topical collection on emergent dynamics of biological networks, Journal of Biosciences, 47(4): 82. Kalyaanamoorthy S., and Chen Y., 2014, Modelling and enhanced molecular dynamics to steer structure-based drug discovery, Progress in Biophysics and Molecular Biology, 114(3): 123-136. https://doi.org/10.1016/j.pbiomolbio.2013.06.004. Karlebach G., and Shamir R., 2008, Modelling and analysis of gene regulatory networks, Nature Reviews Molecular Cell Biology, 9: 770-780. https://doi.org/10.1038/nrm2503. Kholodenko B., Yaffe M.B., and Kolch W., 2012, Computational approaches for analyzing information flow in biological networks, Science Signaling, 5(220): re1. https://doi.org/10.1126/scisignal.2002961. Koutrouli M., Karatzas E., Páez-Espino D., and Pavlopoulos G.A., 2020, A guide to conquer the biological network era using graph theory, Frontiers in Bioengineering and Biotechnology, 8: 34. https://doi.org/10.3389/fbioe.2020.00034. Lee B., Zhang S., Poleksic A., and Xie L., 2020, Heterogeneous multi-layered network model for omics data integration and analysis, Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.01381. Liang J., and Han J., 2012, Stochastic boolean networks: an efficient approach to modeling gene regulatory networks, BMC Systems Biology, 6: 1-21. https://doi.org/10.1186/1752-0509-6-113. Liang Y., and Kelemen A., 2018, Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications, Briefings in Bioinformatics, 19(5): 1051-1068. https://doi.org/10.1093/bib/bbx036. Liang Z., Verkhivker G., and Hu G., 2020, Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory tools and applications, Briefings in Bioinformatics, 21(3): 815-835. https://doi.org/10.1093/bib/bbz029. Liu C., Ma Y., Zhao J., Nussinov R., Zhang Y., Cheng F., and Zhang Z., 2020, Computational network biology: data models and applications, Physics Reports, 846: 1-66. https://doi.org/10.1016/j.physrep.2019.12.004. Liu X.W., Shi D.F., Zhou S.Y., Liu H.L., Liu H.X., and Yao X.J., 2018, Molecular dynamics simulations and novel drug discovery, Expert Opinion on Drug Discovery, 13(1): 23-37. https://doi.org/10.1080/17460441.2018.1403419. Mangan N., Brunton S., Proctor J., and Kutz J., 2016, Inferring biological networks by sparse identification of nonlinear dynamics, IEEE Transactions on Molecular Biological and Multi-Scale Communications, 2: 52-63. https://doi.org/10.1109/TMBMC.2016.2633265. Manipur I., Granata I., Maddalena L., and Guarracino M.R., 2020, Clustering analysis of tumor metabolic networks, BMC Bioinformatics, 21: 1-14. https://doi.org/10.1186/s12859-020-03564-9. Megchelenbrink W., Rossell S., Huynen M.A., Notebaart R.A., and Marchiori E., 2015, Estimating metabolic fluxes using a maximum network flexibility paradigm, PLoS ONE, 10(10): e0139665. https://doi.org/10.1371/journal.pone.0139665. Mochizuki A., 2016, Theoretical approaches for the dynamics of complex biological systems from information of networks, Proceedings of the Japan Academy, Series B Physical and Biological Sciences, 92: 255-264. https://doi.org/10.2183/pjab.92.255. Murrugarra D., and Aguilar B., 2019, Modeling the stochastic nature of gene regulation with boolean networks, Algebraic and Combinatorial Computational Biology, 2019: 147-173. https://doi.org/10.1016/B978-0-12-814066-6.00005-2. Muzio G., O’Bray L., and Borgwardt K., 2020, Biological network analysis with deep learning, Briefings in Bioinformatics, 22: 1515-1530. https://doi.org/10.1093/bib/bbaa257. Nardini J.T., Baker R.E., Simpson M.E., and Flores K.B., 2020, Learning differential equation models from stochastic agent-based model simulations, Journal of the Royal Society Interface, 18(176): 20200987. https://doi.org/10.1098/rsif.2020.0987. Pandey V., Hadadi N., and Hatzimanikatis V., 2018, Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models, PLoS Computational Biology, 15(5): e1007036. https://doi.org/10.1371/journal.pcbi.1007036.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==