CMB_2024v14n1

Computational Molecular Biology 2024, Vol.14, No.1, 36-44 http://bioscipublisher.com/index.php/cmb 44 Ahmed F., Kumar G., Soliman F., Adly M., Soliman H., El-Matbouli M., and Saleh M., 2019, Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture, Comparative biochemistry and physiology, Part D, Genomics and proteomics, 32: 100625. https://doi.org/10.1016/j.cbd.2019.100625 Birk M., Ahmed-Begrich R., Tran S., Elsholz A., Frese C., and Charpentier E., 2021, Time-resolved proteome analysis of listeria monocytogenes during infection reveals the role of the aaa+ chaperone clpc for host cell adaptation, mSystems, 6. https://doi.org/10.1128/mSystems.00215-21 Bonar E., Wojcik I., and Władyka B., 2015, Proteomics in studies of Staphylococcus aureus virulence.. Acta biochimica Polonica, 62(3): 367-81. https://doi.org/10.18388/abp.2015_1083 Cash P., 2011, Investigating pathogen biology at the level of the proteome, PROTEOMICS, 11. https://doi.org/10.1002/pmic.201100029 Dwivedi P., Alam S., and Tomar R., 2016, Secretome, surfome and immunome: emerging approaches for the discovery of new vaccine candidates against bacterial infections, World Journal of Microbiology and Biotechnology, 32: 1-9. https://doi.org/10.1007/s11274-016-2107-3 Hecker M., and Engelmann S., 2000, Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic gram-positive bacteria, International journal of medical microbiology : IJMM, 290(2): 123-34. https://doi.org/10.1016/S1438-4221(00)80080-6 Khodadadi E., Zeinalzadeh E., Taghizadeh S., Mehramouz B., Kamounah F., Khodadadi E., Ganbarov K., Yousefi B., Bastami M., and Kafil H., 2020, Proteomic applications in antimicrobial resistance and clinical microbiology studies, Infection and Drug Resistance, 13: 1785-1806. https://doi.org/10.2147/IDR.S238446 Pérez-Llarena F., and Bou G., 2016, Proteomics as a tool for studying bacterial virulence and antimicrobial resistance, Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00410 Saleh S., Staes A., Deborggraeve S., and Gevaert K., 2019, Targeted proteomics for studying pathogenic bacteria, PROTEOMICS, 19. https://doi.org/10.1002/pmic.201800435 Tjalsma H., Antelmann H., Jongbloed J., Braun P., Darmon E., Dorenbos R., Dubois J., Westers H., Zanen G., Quax W., Kuipers O., Bron S., Hecker M., and Dijl J., 2004, Proteomics of protein secretion by bacillus subtilis: separating the “secrets” of the secretome, Microbiology and Molecular Biology Reviews, 68: 207-233. https://doi.org/10.1128/MMBR.68.2.207-233.2004 Wu H., Wang A., and Jennings M., 2008, Discovery of virulence factors of pathogenic bacteria., Current opinion in chemical biology, 12(1): 93-101. https://doi.org/10.1016/j.cbpa.2008.01.023 Zubair M., Wang J., Yu Y., Faisal M., Qi M., Shah A., Feng Z., Shao G., Wang Y., and Xiong Q., 2022, Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases, Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.1079359

RkJQdWJsaXNoZXIy MjQ4ODYzNA==