Bioscience Methods 2025, Vol.16, No.4, 218-227 http://bioscipublisher.com/index.php/bm 225 Cambra-Baseca C., Sendra S., Lloret J., and Gironés J., 2019, A smart decision system for digital farming, Agronomy, 9(5): 216. https://doi.org/10.3390/AGRONOMY9050216 Cesco S., Sambo P., Borin M., Basso B., Orzes G., and Mazzetto F., 2023, Smart agriculture and digital twins: Applications and challenges in a vision of sustainability, European Journal of Agronomy, 146: 126809. https://doi.org/10.1016/j.eja.2023.126809 Chen C., Pan J., and Lam S., 2014, A review of precision fertilization research, Environmental Earth Sciences, 71(9): 4073-4080. https://doi.org/10.1007/s12665-013-2792-2 Chen T., Qin G., and Tian S., 2020, Regulatory network of fruit ripening: current understandings and future challenges, New Phytologist, 228(4): 1219-1226. https://doi.org/10.1111/nph.16822 Chen Y., Xiang L., Li F., Chang Y., Yu H., Zhang J., and Xie Z., 2025, The appropriate reduction of nitrogen fertilization enhances soil quality without compromising fruit yield and quality in a bayberry orchard, Polish Journal of Environmental Studies, 1-13. https://doi.org/10.15244/pjoes/204242 Dai B., Xu C.M., Wang L.F., Zhang H.R., Ye L.F., and Lu X.P., 2012, Biological characteristics and ISSR identification of 'SY-2' waxberry, Acta AgriculturaeUniversitatis Jiangxiensis, 34(4): 676-681. Dilshika K., Polwaththa M., Amarasinghe A., Maduka G., and Nandasena S., 2024, A review of innovative fertilization strategies in precision agriculture, Open Access Research Journal of Science and Technology, 12(2): 49-57. https://doi.org/10.53022/oarjst.2024.12.2.0137 Finger R., Swinton S., Benni N., and Walter A., 2019, Precision farming at the nexus of agricultural production and the environment, Annual Review of Resource Economics, 11(1): 313-335. https://doi.org/10.1146/ANNUREV-RESOURCE-100518-093929 Fue K., Baitu G., Jokonya O., Banwart S., and Korsten L., 2025, Digitalization of precision fertilization in East Africa: adoption, benefits and losses, Frontiers in Sustainable Food Systems, 9: 1497577. https://doi.org/10.3389/fsufs.2025.1497577 Gheorghe G., Dumitru D., Ciuperca R., Mateescu M., Mantovani S., Prisacariu E., and Harabagiu A., 2025, Advancing precision agriculture with UAV’s: innovations in fertilization, INMATEH: Agricultural Engineering, 74(3): 1057-1072. https://doi.org/10.35633/inmateh-74-89 Hajam M., Hassan G., Parray E., Wani M., Ma A., Ma S., Khan I., Wani A., Bhat T., and Masoodi L., 2018, Transforming fruit production by plant growth regulators, Pharmacognosy and Phytochemistry, 7(1): 1613-1617. Hassan S., Alam M., Illahi U., Ghamdi M., Almotiri S., and Su’ud M., 2021, A systematic review on monitoring and advanced control strategies in smart agriculture, IEEE Access, 9: 32517-32548. https://doi.org/10.1109/ACCESS.2021.3057865 Huang J.D., and Liang S.M., 2020, Research on concave-convex shape pruning and fruit thinning of Myrica rubra, Journal of Zhejiang Agricultural Sciences, 61(8): 1565-1567. Jani K., and Chaubey N., 2024, SMAIoT-ferti: a smart cropland monitoring and optimal fertigation IoT system, International Journal of Information Technology, 16(4): 2253-2261. https://doi.org/10.1007/s41870-024-01731-2 Jovarauskas D., Steponavičius D., Kemzūraitė A., Zinkevicius R., and Venslauskas K., 2021, Comparative analysis of the environmental impact of conventional and precision spring wheat fertilization under various meteorological conditions, Journal of Environmental Management, 296: 113150. https://doi.org/10.1016/j.jenvman.2021.113150 Kjærsgaard N., Ottosen I., Diamantopoulos E., and Andersen B., 2022, An investigation of economic and environmental impacts from precision fertilization, SSRN Electronic Journal, 2020: 1-13. https://doi.org/10.2139/ssrn.4017116 Kumar S., Wani A., Kaushik R., Kaur H., Djajadi D., Khamidah A., Ma S., Alasbali N., Alreshidi M., Alam M., Yadav K., and Wani A., 2024, Navigating the landscape of precision horticulture: sustainable agriculture in the digital Age, Scientia Horticulturae, 338: 113688. https://doi.org/10.1016/j.scienta.2024.113688 Lei S.Y., 2014, Cultivation technique for acarpous waxberry bark, Southeast Horticulture, (2): 43-44. Loures L., Chamizo A., Ferreira P., Loures A., Castanho R., and Panagopoulos T., 2020, Assessing the effectiveness of precision agriculture management systems in mediterranean small farms, Sustainability, 12(9): 3765. https://doi.org/10.3390/su12093765 Lu Y., Liu M., Li C., Liu X., Cao C., Li X., and Kan Z., 2022, Precision fertilization and irrigation: progress and applications, AgriEngineering, 4(3): 626-655. https://doi.org/10.3390/agriengineering4030041 Maraveas C., 2022, Incorporating artificial intelligence technology in smart greenhouses: current state of the art, Applied Sciences, 13(1): 14. https://doi.org/10.3390/app13010014 Medel-Jiménez F., Krexner T., Gronauer A., and Kral I., 2023, Life cycle assessment of four different precision agriculture technologies and comparison with a conventional scheme, Journal of Cleaner Production, 434: 140198. https://doi.org/10.1016/j.jclepro.2023.140198 Munir A., Salah M., Ali M., Ali B., Saleem M., Samarasinghe K., De Silva S., Ercişli S., Iqbal N., and Anas M., 2024, Advancing agriculture: harnessing smart nanoparticles for precision fertilization, BioNanoScience, 14(4): 3846-3863. https://doi.org/10.1007/s12668-024-01597-5
RkJQdWJsaXNoZXIy MjQ4ODYzNA==