BM_2025v16n4

Bioscience Methods 2025, Vol.16, No.4, 183-192 http://bioscipublisher.com/index.php/bm 191 Lam K., and Morton B., 2003, Mitochondrial DNA and morphological identification of a new species of Crassostrea (Bivalvia: Ostreidae) cultured for centuries in the Pearl River Delta, Hong Kong, China, Aquaculture, 228(1-4): 1-13. https://doi.org/10.1016/S0044-8486(03)00215-1 Li A., Dai H., Guo X., Zhang Z., Zhang K., Wang C., Wang W., Chen H., Li X., Zheng H., Zhang G., and Li L., 2021b, Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity, Communications Biology, 4(1): 1287. https://doi.org/10.1038/s42003-021-02823-6 Li A., Li L., Song K., Wang W., and Zhang G., 2017, Temperature, energy metabolism, and adaptive divergence in two oyster subspecies, Ecology and Evolution, 7(16): 6151-6162. https://doi.org/10.1002/ece3.3085 Li A., Li L., Wang W., Song K., and Zhang G., 2018a, Transcriptomics and fitness data reveal adaptive plasticity of thermal tolerance in oysters inhabiting different tidal zones, Frontiers in Physiology, 9: 825. https://doi.org/10.3389/fphys.2018.00825 Li A., Wang C., Wang W., Zhang Z., Liu M., She Z., Jia Z., Zhang G., and Li L., 2020, Molecular and fitness data reveal local adaptation of Southern and Northern Estuarine oysters (Crassostrea ariakensis), Frontiers in Marine Science, 7: 589099. https://doi.org/10.3389/fmars.2020.589099 Li C., Kou Q., Zhang Z., Hu L., Huang W., Cui Z., Liu Y., Ma P., and Wang H., 2021a, Reconstruction of the evolutionary biogeography reveal the origins and diversification of oysters (Bivalvia: Ostreidae), Molecular Phylogenetics and Evolution, 164: 107268. https://doi.org/10.1016/j.ympev.2021.107268 Li L., Li A., Song K., Meng J., Guo X., Li S., Li C., De Wit P., Que H., Wu F., Wang W., Qi H., Xu F., Cong R., Huang B., Li Y., Wang T., Tang X., Liu S., Li B., Shi R., Liu Y., Bu C., Zhang C., He W., Zhao S., Li H., Zhang S., Zhang L., and Zhang G., 2018b, Divergence and plasticity shape adaptive potential of the Pacific oyster, Nature Ecology & Evolution, 2(11): 1751-1760. https://doi.org/10.1038/s41559-018-0668-2 Li X., Bai Y., Dong Z., Xu C., Liu S., Yu H., Kong L., and Li Q., 2022, Chromosome-level genome assembly of the European flat oyster (Ostrea edulis) provides insights into its evolution and adaptation, Comparative biochemistry and physiology, Part D: Genomics & Proteomics, 45: 101045. https://doi.org/10.1016/j.cbd.2022.101045 Li Y., Nong W., Baril T., Yip H., Swale T., Hayward A., Ferrier D., and Hui J., 2020, Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome, BMC Genomics, 21(1): 713. https://doi.org/10.1186/s12864-020-07027-6 Liu S., Liu Y., He J., Lin Z., and Xue Q., 2022, The complete mitochondrial genome of Crassostrea hongkongensis from East China Sea indicates species’ range may extend northward, Molecular Biology Reports, 49(2): 1631-1635. https://doi.org/10.1007/s11033-021-07016-2 Liu S., Shi C., Chen C., Tan Y., Tian Y., Macqueen D., and Li Q., 2024, The origins and functional significance of bivalve genome diversity, bioRxiv, 2024: 611967. https://doi.org/10.1101/2024.09.09.611967 Márquez-Aliaga A., Jiménez-Jiménez A., Checa A., and Hagdorn H., 2005, Early oysters and their supposed Permian ancestors, Palaeogeography, Palaeoclimatology, Palaeoecology, 229(1-2): 127-136. https://doi.org/10.1016/J.PALAEO.2005.06.034 Modak T., Literman R., Puritz J., Johnson K., Roberts E., Proestou D., Guo X., Gómez-Chiarri M., and Schwartz R., 2021, Extensive genome-wide duplications in the eastern oyster (Crassostrea virginica), Philosophical Transactions of the Royal Society B, 376(1825): 20200164. https://doi.org/10.1098/rstb.2020.0164 Moneer E., Bazeen Y., El-Sheikh I., and Samir A., 2024, Taxonomic review, palaeoecological, and palaeobiogeographical significances of Campanian Tethyan oysters from the North Eastern Desert, Egypt, Scientific Reports, 14(1): 13518. https://doi.org/10.1038/s41598-024-63379-z Powell D., Subramanian S., Suwansa-Ard S., Zhao M., O'Connor W., Raftos D., and Elizur A., 2018, The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves, DNA Research, 25(6): 655-665. https://doi.org/10.1093/dnares/dsy032 Qi H., Cong R., Wang Y., Li L., and Zhang G., 2022, Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostreaoyster congeners: Crassostrea angulata and Crassostrea gigas, GigaScience, 12: giad077. https://doi.org/10.1093/gigascience/giad077 Rantuch J., 2023, Rhynchostreon oyster assemblages across the Central European region: three types of environment and an alternative view in the intraspecific variability of Rhynchostreon suborbiculatum(Lamarck, 1801), Cretaceous Research, 154: 105747. https://doi.org/10.1016/j.cretres.2023.105747 Ren J., Liu X., Jiang F., Guo X., and Liu B., 2010, Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia, BMC Evolutionary Biology, 10(1): 394. https://doi.org/10.1186/1471-2148-10-394 Salvi D., and Mariottini P., 2016, Molecular taxonomy in 2D: a novel ITS2 rRNA sequence‐structure approach guides the description of the oysters' subfamily Saccostreinae and the genus Magallana (Bivalvia: Ostreidae), Zoological Journal of the Linnean Society, 179(2): 263-276. https://doi.org/10.1111/ZOJ.12455

RkJQdWJsaXNoZXIy MjQ4ODYzNA==