BM_2025v16n4

Bioscience Methods 2025, Vol.16, No.4, 173-182 http://bioscipublisher.com/index.php/bm 1 81 for improving breeding techniques, optimizing breeding methods and reducing ecological impacts. Ecological monitoring, population models and the interactions among various stakeholders balance the relationship between fishery economic benefits and local biodiversity conservation. Scientific exploration and flexible management provide strong support for the sustainable development and protection of marble goby. Acknowledgments We extend our sincere thanks to two anonymous peer reviewers for their feedback on the initial draft of this study, whose conscientious evaluations and constructive suggestions have contributed to the improvement of our manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. Reference Chew S., Tng Y., Wee N., Wilson J., and Ip Y., 2009, Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154(3): 360-369. https://doi.org/10.1016/j.cbpa.2009.07.005 Cortés A., Restrepo-Montoya M., and Bedoya-Canas L., 2020, Modern strategies to assess and breed forest tree adaptation to changing climate, Frontiers in Plant Science, 11: 583323. https://doi.org/10.3389/fpls.2020.583323 Gao X., Zhang X., Meng H., Li J., Zhang D., and Liu C., 2018, Comparative chloroplast genomes of Paris Sect. Marmorata: insights into repeat regions and evolutionary implications, BMC Genomics, 19(Suppl 10): 878. https://doi.org/10.1186/s12864-018-5281-x Ha H., Senoo S., Tsunemoto K., Nakagawa Y., Miyashita S., Murata O., and Kato K., 2011, Population structure of marble goby Oxyeleotris marmorata (Bleeker) in Southeast Asia inferred from mitochondrial DNA, Aquaculture Science, 59(3): 383-391. https://doi.org/10.11233/AQUACULTURESCI.59.383 Jow L.Y., Chew S.F., Lim C.B., Anderson P.M., and Ip Y.K. 1999, The marble goby Oxyeleotris marmoratus activates hepatic glutamine synthetase and detoxifies ammonia to glutamine during air exposure, Journal of Experimental Biology, 202(3): 237-245. https://doi.org/10.1242/jeb.202.3.237 Kelley J., Yee M., Brown A., Richardson R., Tatarenkov A., Lee C., Harkins T., Bustamante C., and Earley R., 2016, The genome of the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus: a model for studying phenotypic plasticity and adaptations to extreme environments, Genome Biology and Evolution, 8(7): 2145-2154. https://doi.org/10.1093/gbe/evw145 Lestari W., Rukhayah S., and Jamilatun T., 2019, Ikan introduksi Oxyeleotris marmorata, Bleeker (1852): populasi, laju exploitasi dan pengendaliannya di Waduk Sempor, Kebumen, Inflammatory Bowel Diseases, 36(3): 132-138. https://doi.org/10.20884/1.MIB.2019.36.3.823 Lim L., Lai S., Yong A., Shapawi R., and Kawamura G., 2017, Feeding response of marble goby (Oxyeleotris marmorata) to organic acids, amino acids, sugars and some classical taste substances, Applied Animal Behaviour Science, 196: 113-118. https://doi.org/10.1016/J.APPLANIM.2017.06.014 Lim L., Tan S., Tuzan A., Kawamura G., Mustafa S., Rahmah S., and Liew H., 2020, Diel osmorespiration rhythms of juvenile marble goby (Oxyeleotris marmorata), Fish Physiology and Biochemistry, 46(4): 1621-1629. https://doi.org/10.1007/s10695-020-00817-5 Liu W., Zhang H., Xiang Y., Jia K., Luo M., and Yi M., 2020, A novel germline and somatic cell expression of two sexual differentiation genes, Dmrt1 and Foxl2 in marbled goby (Oxyeleotris marmorata), Aquaculture, 516: 734619. https://doi.org/10.1016/j.aquaculture.2019.734619 Luo J., Zhu X., Peng Y., and Yin S., 2013, Isolation and characterization of 16 microsatellite loci in marble goby (Oxyeleotris marmoratus), Genetics and Molecular Research, 12(2): 2020-2023. https://doi.org/10.4238/2013.January.4.2 Mai R.D., 2024, Mechanisms of adaptation in aquatic species: from phenotypic plasticity to genetic evolution, International Journal of Aquaculture, 14(3): 139-153. https://doi.org/10.5376/ija.2024.14.0015 Mamangkey J., Anom D., and Kapahang A., 2022, Growth of Betutu fish (Oxyeleotris marmorata BLEEKER, 1852) in Tondano Lake, North Sulawesi, GSC Advanced Research and Reviews, 13(03): 76-81. https://doi.org/10.30574/gscarr.2022.13.3.0343 Neophytou C., Heer K., Milesi P., Peter M., Pyhäjärvi T., Westergren M., Rellstab C., and Gugerli F., 2022, Genomics and adaptation in forest ecosystems, Tree Genetics & Genomes, 18(2): 12. https://doi.org/10.1007/s11295-022-01542-1

RkJQdWJsaXNoZXIy MjQ4ODYzNA==