BM2025v16n3

Bioscience Methods 2025, Vol.16, No.2, 108-116 http://bioscipublisher.com/index.php/bm 115 Lu G., Wang Z., Pan Y., Wu Q., Cheng W., Xu F., Dai S., Li B., Que Y., and Xu L., 2023, Identification of QTLs and critical genes related to sugarcane mosaic disease resistance, Frontiers in Plant Science, 14: 1107314. https://doi.org/10.3389/fpls.2023.1107314 McNeil M., Bhuiyan S., Berkman P., Croft B., and Aitken K., 2018, Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy, PLoS One, 13(5): e0197840. https://doi.org/10.1371/journal.pone.0197840 Ntambo M., Meng J., Rott P., Henry R., Zhang H., and Gao S., 2019, Comparative transcriptome profiling of resistant and susceptible sugarcane cultivars in response to infection by Xanthomonas albilineans, International Journal of Molecular Sciences, 20(24): 6138. https://doi.org/10.3390/ijms20246138 Park H., Kim M., Lee D., Kim H., and Jung H., 2024, CRISPR-Cas9 and beyond: identifying target genes for developing disease-resistant plants, Plant Biology, 26(3): 369-377. https://doi.org/10.1111/plb.13625 Parvaiz A., Mustafa G., Khan M., and Ali M., 2021, Characterization and expression analysis of resistance gene analogues in elite sugarcane genotypes, Protein and Peptide Letters, 28(8): 929-937. https://doi.org/10.2174/0929866528666210129153025 Pimenta R., Aono A., Burbano R., Da Silva M., Anjos I., De Andrade Landell M., Gonçalves M., Pinto L., and De Souza A., 2023, Multiomic investigation of sugarcane mosaic virus resistance in sugarcane, The Crop Journal, 11(6): 1805-1815. https://doi.org/10.1016/j.cj.2023.06.009 Pimenta R., Aono A., Burbano R., Coutinho A., Da Silva C., Anjos I., Perecin D., Landell M., Gonçalves M., Pinto L., and De Souza A., 2021, Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance, Scientific Reports, 11(1): 15730. https://doi.org/10.1038/s41598-021-95116-1 Razzaq M., Aleem M., Mansoor S., Khan M., Rauf S., Iqbal S., and Siddique K., 2021, Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops, International Journal of Molecular Sciences, 22(3): 1292. https://doi.org/10.3390/ijms22031292 Rody H., Bombardelli R., Creste S., Camargo L., Van Sluys M., and Monteiro-Vitorello C., 2019, Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype, BMC Genomics, 20: 1-17. https://doi.org/10.1186/s12864-019-6207-y Rody H., Camargo L., Creste S., Van Sluys M., Rieseberg L., and Monteiro-Vitorello C., 2021, Arabidopsis-based dual-layered biological network analysis elucidates fully modulated pathways related to sugarcane resistance on biotrophic pathogen infection, Frontiers in Plant Science, 12: 707904. https://doi.org/10.3389/fpls.2021.707904 Shabanimofrad M., Yusop M., Ashkani S., Musa M., Adam N., Haifa I., Harun A., and Latif M., 2015, Marker-assisted selection for rice brown planthopper (Nilaparvata lugens) resistance using linked SSR markers, Turkish Journal of Biology, 39(5): 666-673. https://doi.org/10.3906/biy-1406-78 Singh P., Song Q., Singh R., Li H., Solanki M., Malviya M., Verma K., Yang L., and Li Y., 2019, Proteomic analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineuminfection, International Journal of Molecular Sciences, 20(3): 569. https://doi.org/10.3390/ijms20030569 Su Y., Xu L., Wang Z., Peng Q., Yang Y., Chen Y., and Que Y., 2016, Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineumin sugarcane, BMC Genomics, 17: 1-21. https://doi.org/10.1186/s12864-016-3146-8 Venkatesulu S., Makula S., Satiha M., Puligundlal S., and Srikanth K., 2023, Identification of SSR molecular markers for jassid resistance in cotton, Agricultural Science Digest, 43(5): 695-700. https://doi.org/10.18805/ag.d-5740 Wu Q., Su Y., Pan Y., Xu F., Zou W., Que B., Lin P., Sun T., Grisham M., Xu L., and Que Y., 2022, Genetic identification of SNP markers and candidate genes associated with sugarcane smut resistance using BSR-Seq, Frontiers in Plant Science, 13: 1035266. https://doi.org/10.3389/fpls.2022.1035266 Wu Q., Chen Y., Zou W., Pan Y., Lin P., Xu L., Grisham M., Ding Q., Su Y., and Que Y., 2023, Genome-wide characterization of sugarcane catalase gene family identifies a ScCAT1 gene associated disease resistance, International Journal of Biological Macromolecules, 232: 123398. https://doi.org/10.1016/j.ijbiomac.2023.123398 Wu Q., Pan Y., Su Y., Zou W., Xu F., Sun T., Grisham M., Yang S., Xu L., and Que Y., 2022, WGCNA identifies a comprehensive and dynamic gene co-expression network that associates with smut resistance in sugarcane, International Journal of Molecular Sciences, 23(18): 10770. https://doi.org/10.3390/ijms231810770 Yin B., Wang H., Weng S., Li S., He J., and Li C., 2023, A simple sequence repeats marker of disease resistance in shrimp Litopenaeus vannamei and its application in selective breeding, Frontiers in Genetics, 14: 1144361. https://doi.org/10.3389/fgene.2023.1144361 Zhang R., Li H., Gui Y., Wei J., Zhu K., Zhou H., Lakshmanan P., Mao L., Lu M., Liu J., Que Y., Li S., and Liu X., 2022, Comparative transcriptome analysis of two sugarcane cultivars in response to paclobutrazol treatment, Plants, 11(18): 2417. https://doi.org/10.3390/plants11182417

RkJQdWJsaXNoZXIy MjQ4ODYzNA==