BM_2025v16n1

Bioscience Methods 2025, Vol.16, No.1, 41-51 http://bioscipublisher.com/index.php/bm 50 Alamar M., Tosetti R., Landahl S., Bermejo A., and Terry L., 2017, Assuring potato tuber quality during storage: a future perspective, Frontiers in Plant Science, 8: 2034. https://doi.org/10.3389/fpls.2017.02034 Bhattarai P., Gautam D.M., Bhattarai P., and Tripathi K., 2021, Storability of sweet potato genotypes under ordinary ambient storage conditions, Agraarteadus: Journal of Agricultural Science, 32(2): 214-224. Dong T., Zhu M., Yu J., Han R., Tang C., Xu T., Liu J., and Li Z., 2019, RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.), BMC Plant Biology, 19: 1-16. https://doi.org/10.1186/s12870-019-1731-0 Drapal M., and Fraser P., 2019, Determination of carotenoids in sweet potato (Ipomoea batatas L., Lam) tubers: implications for accurate provitamin A determination in staple sturdy tuber crops, Phytochemistry, 167: 112102. https://doi.org/10.1016/j.phytochem.2019.112102 Escobar-Puentes A., Palomo I., Rodríguez L., Fuentes E., Villegas-Ochoa M., González-Aguilar G., Olivas-Aguirre F., and Wall-Medrano A., 2022, Sweet potato (Ipomoea batatas L.) phenotypes: from agroindustry to health effects, Foods, 11(7): 1058. https://doi.org/10.3390/foods11071058 Eyesa W., and Badebo E., 2022, Effect of storage conditions on physico-chemical and sensory acceptability of sweet potato in Gamo Zone, Southern Ethiopia, Research Journal of Food Science and Nutrition, 7(3): 0C8331DA2. https://doi.org/10.31248/rjfsn2022.147 Goyer A., Picard M., Hellmann H., and Mooney S., 2019, Effect of low-temperature storage on the content of folate, vitamin B6, ascorbic acid, chlorogenic acid, tyrosine, and phenylalanine in potatoes, Journal of the Science of Food and Agriculture, 99(10): 4842-4848. https://doi.org/10.1002/jsfa.9750 Hamieh B., Borel P., Raouche S., Bruzzese L., Adjriou N., Halimi C., Marconot G., Gillet G., Rostain J., Guieu R., and Desmarchelier C., 2023, Post-harvest atmospheric pressure and composition modify the concentration and bioaccessibility of α- and β-Carotene in carrots and sweet potatoes, Foods, 12(23): 4262. https://doi.org/10.3390/foods12234262 He Y., Zhu D., Sun Y., Wang Q., Zhu L., and Zeng H., 2021, Metabonomic profiling analyses reveal ANS upregulation to enhance the flavonoid pathway of purple-fleshed sweet potato storage root in response to deep shading, Agronomy, 11(4): 737. https://doi.org/10.3390/AGRONOMY11040737 Hu W., Jiang A., Jin L., Liu C., Tian M., and Wang Y., 2011, Effect of heat treatment on quality, thermal and pasting properties of sweet potato starch during yearlong storage, Journal of the Science of Food and Agriculture, 91(8): 1499-504. https://doi.org/10.1002/jsfa.4340 Karan Y., and Şanli Ö., 2021, The assessment of yield and quality traits of sweet potato (Ipomoea batatas L.) genotypes in middle Black Sea region, Turkey, PLoS ONE, 16(9): e0257703. https://doi.org/10.1371/journal.pone.0257703 Krochmal-Marczak B., Sawicka B., Krzysztofik B., Danilčenko H., and Jarienė E., 2020, The effects of temperature on the quality and storage stalibity of sweet potato (Ipomoea batatas L. [Lam]) grown in Central Europe, Agronomy, 10(11): 1665. https://doi.org/10.3390/agronomy10111665 Yu G., Lee H., Yong J., Lee S., Ko S., Nom S., and Lee K., 2018, Quality characteristics of sweet potato varieties according to storage conditions, 13th International Conference on Agriculture & Horticulture, 7: 103-104. https://doi.org/10.4172/2168-9881-C2-034 Li Y., Yin Y., Golding J., Geng S., Chen G., and Yang H., 2022, Metabolomic and transcriptomic analyses of quality deterioration in Fusarium solani-Infected sweet potato (Ipomoea batatas (L.) Lam cv Xinxiang) storage roots, Journal of Agricultural and Food Chemistry, 70(23): 7258-7266. https://doi.org/10.1021/acs.jafc.2c01220 Mekonen N., Nahusenay H., and Hailu K., 2022, Effect of processing methods on nutrient contents of sweet potato (Ipomoea batatas (L.) Lam.) varieties grown in Ethiopia, Journal of Food and Nutrition Sciences, 21: 261. https://doi.org/10.11648/j.jfns.20221002.11 Mitra S., Tarafdar J., and Palaniswami M., 2010, Impacts of different maturity stages and storage on nutritional changes in raw and cooked tubers of orange-fleshed sweet potato (Ipomoea batatas) cultivars, In: III International Conference Postharvest Unlimited 2008 858. 2008, pp.205-212. https://doi.org/10.17660/ACTAHORTIC.2010.858.27 Pang L.J., Lu G.Q., Cheng J.Y., Lu X.H., Ma D.F., Li Q., Li Z.Y., Zheng J., Zhang C.F., and Pan S.Y., 2021, Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage, Postharvest Biology and Technology, 180: 111619. https://doi.org/10.1016/J.POSTHARVBIO.2021.111619 Pusik L., Pusik V., Postnov G., Safronska I., Ilina N., Lyubymova N., Sukhova G., and Hrynova Y., 2020, The effect of storing temperature and variety features on the culinary properties of potato, Eastern-European Journal of Enterprise Technologies, 5(11-107): 43-53. https://doi.org/10.15587/1729-4061.2020.214930 Rashid M., Liu K., Jatoi M., Safdar B., Lv D., and Li Q., 2022, Energy efficient drying technologies for sweet potatoes: Operating and drying mechanism, quality-related attributes, Frontiers in Nutrition, 9: 1040314. https://doi.org/10.3389/fnut.2022.1040314

RkJQdWJsaXNoZXIy MjQ4ODYzNA==