BM_2025v16n1

Bioscience Methods 2025, Vol.16, No.1, 11-22 http://bioscipublisher.com/index.php/bm 21 Piao L., Qi H., Li C., and Zhao M., 2016, Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize, Field Crops Research, 198: 258-268. https://doi.org/10.1016/J.FCR.2016.08.012 Punyalue A., Jamjod S., and Rerkasem B., 2018, Intercropping maize with legumes for sustainable highland maize production, Mountain Research and Development, 38(1): 35-44. https://doi.org/10.1659/MRD-JOURNAL-D-17-00048.1 Ren H., Cheng Y., Li R., Yang Q., Liu P., Dong S., Zhang J., and Zhao B., 2020, Integrating density and fertilizer management to optimize the accumulation, remobilization, and distribution of biomass and nutrients in summer maize, Scientific Reports, 10(1): 11777. https://doi.org/10.1038/s41598-020-68730-8 Ren H., Li Z., Cheng Y., Zhang J., Liu P., Li R., Yang Q., Dong S., Zhang J., and Zhao B., 2020, Narrowing yield gaps and enhancing nitrogen utilization for summer maize (Zea mays L) by combining the effects of varying nitrogen fertilizer input and planting density in DSSAT simulations, Frontiers in Plant Science, 11: 560466. https://doi.org/10.3389/fpls.2020.560466 Rusinamhodzi L., Corbeels M., Nyamangara J., and Giller K., 2012, Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique, Field Crops Research, 136: 12-22. https://doi.org/10.1016/J.FCR.2012.07.014 Sidahmed H., Illés Á., ALmahi A., and Nagy J., 2024, Performance of agricultural factors on yield of sweet corn (Zea mays L. Saccharata)-a review, Acta Agraria Debreceniensis, 1: 143-156. https://doi.org/10.34101/actaagrar/1/12830 Tan H., Zhao F., Han H., Bao F., Chen B., Hou J., Lou X., and Wang G., 2020, Effects of meteorological factors on yield characters of waxy corn at different sowing dates, Journal of Plant Sciences, 8(6): 214-220. https://doi.org/10.11648/J.JPS.20200806.14 Wang G., Zhao F., Tan H., Bao F., Han H., and Su T., 2015,The current situation and main planting modes of fresh corn industry in Zhejiang province, Journal of Zhejiang Agricultural Sciences, 56(10): 1553-1556, 1628. https://doi.org/10.16178/j.issn.0528-9017.20151007 Wang N., Shao T., Huang H., and Wu M., 2023, The effect of planting density on the yield and main characteristics of fresh eating corn colored sweet glutinous 168, Horticulture & Seed, 43(12): 91-92. https://doi.org/10.16530/j.cnki.cn21-1574/s.2023.12.031 Wu W., Zhang L., Chu Z., Yue W., Xu Y., Peng C., Chen X., Jing L., Ma W., and Wang S., 2023b, Improvement of climate resource utilization efficiency to enhance maize yield through adjusting planting density, Agronomy, 13(3): 846. https://doi.org/10.3390/agronomy13030846 Wu X., Tong L., Kang S., Du T., Ding R., Li S., and Chen Y., 2023a, Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China, Journal of the Science of Food and Agriculture, 103(11): 5300-5311. https://doi.org/10.1002/jsfa.12602 Wu Z., Xue B., Wang S., Xing X., Nuo M., Meng X., Wu M., Jiang H., Ma H., Yang M., Wei X., Zhao G., and Tian P., 2024, Rice under dry cultivation-maize intercropping improves soil environment and increases total yield by regulating belowground root growth, Plants, 13(21): 2957. https://doi.org/10.3390/plants13212957 Xin Y., and Tao F., 2019, Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain, Science of the Total Environment, 654(1): 480-492. https://doi.org/10.1016/j.scitotenv.2018.11.126 Xu J., Cai H., Wang X., Ma C., Lu Y., Ding Y., Wang X., Chen H., Wang Y., and Saddique Q., 2020, Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching, Agricultural Water Management, 228: 105904. https://doi.org/10.1016/j.agwat.2019.105904 Ye D., Chen J., Wang X., Sun Y., Yu Z., Zhang R., Saddique M., Su D., and Muneer M., 2023a, Coupling effects of optimized planting density and variety selection in improving the yield, nutrient accumulation, and remobilization of sweet maize in Southeast China, Agronomy, 13(11): 2672. https://doi.org/10.3390/agronomy13112672 Ye D., Chen J., Yu Z., Sun Y., Gao W., Wang X., Zhang R., Nisa Z., Su D., and Muneer M., 2023b, Optimal plant density improves sweet maize fresh ear yield without compromising grain carbohydrate concentration, Agronomy, 13(11): 2830. https://doi.org/10.3390/agronomy13112830 Yin W., Guo Y., Hu F., Fan Z., Feng F., Zhao C., Yu A., and Chai Q., 2018, Wheat-maize intercropping with reduced tillage and straw retention: a step towards enhancing economic and environmental benefits in arid areas, Frontiers in Plant Science, 9: 1328. https://doi.org/10.3389/fpls.2018.01328 Yurina N., Syahrawati M., Arneti A., and Busniah M., 2023, The environmentally IPM package for controlling fall armyworm (Spodoptera frugiperda) inmaize field, Jurnal Proteksi Tanaman, 7(1): 55-64. https://doi.org/10.25077/jpt.7.1.55-64.2023 Zhang L., Zhang Z., Luo Y., Cao J., and Li Z., 2020, Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China, Science of the Total Environment, 728: 138614. https://doi.org/10.1016/j.scitotenv.2020.138614

RkJQdWJsaXNoZXIy MjQ4ODYzNA==