BM_2025v16n1

Bioscience Methods 2025, Vol.16, No.1, 11-22 http://bioscipublisher.com/index.php/bm 20 Green K., Stenberg J., and Lankinen Å., 2020, Making sense of integrated pest management (IPM) in the light of evolution, Evolutionary Applications, 13(8): 1791-1805. https://doi.org/10.1111/eva.13067 Guo D., Chen C., Zhou B., Ma D., Batchelor W., Han X., Ding Z., Du M., Zhao M., Li M., and Ma W., 2022, Drip fertigation with relatively low water and N input achieved higher grain yield of maize by improving pre-and post-silking dry matter accumulation, Sustainability, 14(13): 7850. https://doi.org/10.3390/su14137850 Hou J., Zhang J., Bao F., Zhang P., Han H., Tan H., Chen B., and Zhao F., 2024, The contribution of exotic varieties to maize genetic improvement, Molecular Plant Breeding, 15(4): 198-208. https://doi.org/10.5376/mpb.2024.15.0020 Imran A., Khan A., Mahmood T., Tawaha A., and Khanum S., 2021, Adequate fertilization, application method and sowing techniques improve maize yield and related traits, Communications in Soil Science and Plant Analysis, 52(19): 2318-2330. https://doi.org/10.1080/00103624.2021.1925688 Jaidka M., Bathla S., and Kaur R., 2019, Improved technologies for higher maize production, Maize-Production and Use, 2019: 81-100. https://doi.org/10.5772/intechopen.88997 Jiang P., Wang Y., Zhang Y., Fei J., Rong X., Peng J., Yin L., and Luo G., 2024, Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes, New Phytologist, 243(4): 1506-1521. https://doi.org/10.1111/nph.19906 Kebe A., Hameed S., Farooq M., Sufyan A., Malook M., Awais S., Riaz M., Waseem M., Amjad U., and Abbas N., 2023, Enhancing crop protection and yield through precision agriculture and integrated pest management: a comprehensive review, Asian Journal of Research in Crop Science, 8(4): 443-453. https://doi.org/10.9734/ajrcs/2023/v8i4225 Khokhar M., Kumar R., Kumar A., Sehgal M., Singh S., Meena P., Singh N., Acharya L., Birah A., Singh K., Bana R., Gurjar M., Chander S., and Choudhary M., 2024, Impact of IPM practices on microbial population and disease development in transplanted and direct-seeded rice, Frontiers in Microbiology, 15: 1388754. https://doi.org/10.3389/fmicb.2024.1388754 Li G., Li W., Zhang S., Lu W., and Lu D., 2022, Optimized Fertilization practices improved rhizosphere soil chemical and bacterial properties and fresh waxy maize yield, Metabolites, 12(10): 935. https://doi.org/10.3390/metabo12100935 Liu M., and Zhao H., 2023, Maize-soybean intercropping improved maize growth traits by increasing soil nutrients and reducing plant pathogen abundance, Frontiers in Microbiology, 14: 1290825. https://doi.org/10.3389/fmicb.2023.1290825 Liu Y., Bai M., Shen F., Wu Z., Yang J., Li N., Liu H., Dai J., and Han X., 2024, Enhancing soybean and maize yields through improved nitrogen and soil water use efficiencies: a 40-year study on the impact of farmyard manure amendment in Northeast China, Plants, 13(4): 500. https://doi.org/10.3390/plants13040500 Madembo C., Mhlanga B., and Thierfelder C., 2020, Productivity or stability? Exploring maize-legume intercropping strategies for smallholder conservation agriculture farmers in Zimbabwe, Agricultural Systems, 185: 102921. https://doi.org/10.1016/j.agsy.2020.102921 Mucheru-Muna P., Pypers P., Mugendi D., Kung’u J., Mugwe J., Merckx R., and Vanlauwe B., 2010, A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya, Field Crops Research, 115(2): 132-139. https://doi.org/10.1016/J.FCR.2009.10.013 Nemeskéri E., Molnár K., Rácz C., Dobos A., and Helyes L., 2019, Effect of water supply on spectral traits and their relationship with the productivity of sweet corns, Agronomy, 9(2): 63. https://doi.org/10.3390/AGRONOMY9020063 Olsen J., Blight G., and Gillespie D., 1990, Comparison of yield, cob characteristics and sensory quality of six supersweet (sh2) corn cultivars grown in a subtropical environment, Australian Journal of Experimental Agriculture, 30(3): 387-393. https://doi.org/10.1071/EA9900387 Özata E., 2019, Evaluation of fresh ear yield and quality performance in super sweet corn, International Journal of Life Sciences and Biotechnology, 2(2): 80-94. https://doi.org/10.38001/IJLSB.566890 Paranhos J., Foshee W., Coolong T., Heyes B., Salazar-Gutiérrez M., Kesheimer K., and Da Silva A., 2023, Characterization of sweet corn production in subtropical environmental conditions, Agriculture, 13(6): 1156. https://doi.org/10.3390/agriculture13061156 Patel P., Choudhury S., Gupta S., Das A., Pathak S., Kumar D., and Panda C., 2024, Optimizing input management practices for sustainable maize production, Journal of Scientific Research and Reports, 30(8): 305-312. https://doi.org/10.9734/jsrr/2024/v30i82252 Pecenka J., Ingwell L., Foster R., Krupke C., and Kaplan I., 2021, IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation, Proceedings of the National Academy of Sciences of the United States of America, 118(44): e2108429118. https://doi.org/10.1073/pnas.2108429118

RkJQdWJsaXNoZXIy MjQ4ODYzNA==