BM_2024v15n6

Bioscience Methods 2024, Vol.15, No.6, 315-326 http://bioscipublisher.com/index.php/bm 325 Kim D., Alptekin B., and Budak H., 2017, CRISPR/Cas9 genome editing in wheat, Functional & Integrative Genomics, 18: 31-41. https://doi.org/10.1007/s10142-017-0572-x Kumar D., Kumar A., Chhokar V., Gangwar O., Bhardwaj S., Sivasamy M., Prasad S., Prakasha T., Khan H., Singh R., Sharma P., Sheoran S., Iquebal M., Jaiswal S., Angadi U., Singh G., Rai A., Singh G., Kumar D., and Tiwari R., 2020, Genome-wide association studies in diverse spring wheat panel for stripe, stem, and leaf rust resistance, Frontiers in Plant Science, 11: 748. https://doi.org/10.3389/fpls.2020.00748 Kumar M., Prusty M., Pandey M., Singh P., Bohra A., Guo B., and Varshney R., 2023, Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants, Frontiers in Plant Science, 14: 1157678. https://doi.org/10.3389/fpls.2023.1157678 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University-SCIENCE B, 22(4): 253-284. https://doi.org/10.1631/jzus.B2100009 Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., and Gao C., 2017, Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nature Communications, 8(1): 14261. https://doi.org/10.1038/ncomms14261 Liu H., Chen W., Li Y., Sun L., Chai Y., Chen H., Nie H., and Huang C., 2022, CRISPR/Cas9 technology and its utility for crop improvement, International Journal of Molecular Sciences, 23(18): 10442. https://doi.org/10.3390/ijms231810442 Liu L., Gallagher J., Arevalo E., Chen R., Skopelitis T., Wu Q., Bartlett M., and Jackson D., 2021b, Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLEgenes, Nature Plants, 7(3): 287-294. https://doi.org/10.1038/s41477-021-00858-5 Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S., Ma W., and She M., 2021, Application of CRISPR/Cas9 in crop quality improvement, International Journal of Molecular Sciences, 22(8): 4206. https://doi.org/10.3390/ijms22084206 Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., Xie Y., Shen R., Chen S., Wang Z., Chen Y., Guo J., Chen L., Zhao X., Dong Z., and Liu Y., 2015, A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Molecular Plant, 8(8): 1274-1284. https://doi.org/10.1016/j.molp.2015.04.007 Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., and Jin S., 2020, CRISPR/Cas systems in genome editing: methodologies and tools for sgrna design, off-target evaluation, and strategies to mitigate off-target effects, Advanced Science, 7(6): 1902312. https://doi.org/10.1002/advs.201902312 Montecillo J., Chu L., and Bae H., 2020, CRISPR-Cas9 System for plant genome editing: current approaches and emerging developments, Agronomy, 10(7): 1033. https://doi.org/10.3390/agronomy10071033 Nascimento F., Rocha A., Soares J., Mascarenhas M., Ferreira M., Lino L., Ramos A., Diniz L., Mendes T., Ferreira C., Santos-Serejo J., and Amorim E., 2023, Gene editing for plant resistance to abiotic factors: a systematic review, Plants, 12(2): 305. https://doi.org/10.3390/plants12020305 Nazir R., Mandal S., Mitra S., Ghorai M., Das N., Jha N., Majumder M., Pandey D., and Dey A., 2022, CRISPR/Cas genome-editing toolkit to enhance salt stress tolerance in rice and wheat, Physiologia Plantarum, 174: e13642. https://doi.org/10.1111/ppl.13642 Ren X., Yang Z., Xu J., Sun J., Mao D., Hu Y., Yang S., Qiao H., Wang X., Hu Q., Deng P., Liu L., Ji J., Li J., and Ni J., 2014, Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila, Cell Reports, 9(3): 1151-1162. https://doi.org/10.1016/j.celrep.2014.09.044 Shan Q., Wang Y., Li J., and Gao C., 2014, Genome editing in rice and wheat using the CRISPR/Cas system, Nature Protocols, 9(10): 2395-2410. https://doi.org/10.1038/nprot.2014.157 Spielmeyer W., McIntosh R., Kolmer J., and Lagudah E., 2005, Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat, Theoretical and Applied Genetics, 111: 731-735. https://doi.org/10.1007/s00122-005-2058-9 Taj M., Sajjad M., Li M., Yasmeen A., Mubarik M., Kaniganti S., and He C., 2022, Potential targets for CRISPR/Cas knockdowns to enhance genetic resistance against some diseases in wheat (Triticum aestivumL.), Frontiers in Genetics, 13: 926955. https://doi.org/10.3389/fgene.2022.926955 Upadhyay S., Kumar J., Alok A., and Tuli R., 2013, RNA-guided genome editing for target gene mutations in wheat, G3: Genes, Genomes, Genetics, 3(12): 2233-2238. https://doi.org/10.1534/g3.113.008847 Wang H.P., and Li H.M., 2024, Application of molecular marker assisted selection in wheat stress resistance breeding, Triticeae Genomics and Genetics, 15(1): 1-9. https://doi.org/10.5376/tgg.2024.15.0001

RkJQdWJsaXNoZXIy MjQ4ODYzNA==