Bioscience Methods 2024, Vol.15, No.6, 315-326 http://bioscipublisher.com/index.php/bm 324 Funding This research was funded by agrant from Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding (2021C02064-3-4). Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. Reference Ahmad S., Wei X., Sheng Z., Hu P., and Tang S., 2020, CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects, Briefings in Functional Genomics, 19(1): 26-39. https://doi.org/10.1093/bfgp/elz041 Ansari W., Chandanshive S., Bhatt V., Nadaf A., Vats S., Katara J., Sonah H., and Deshmukh R., 2020, Genome editing in cereals: approaches, applications and challenges, International Journal of Molecular Sciences, 21(11): 4040. https://doi.org/10.3390/ijms21114040 Arora L., and Narula A., 2017, Gene editing and crop improvement using CRISPR-Cas9 system, Frontiers in Plant Science, 8: 1932. https://doi.org/10.3389/fpls.2017.01932 Bao A., Burritt D., Chen H., Zhou X., Cao D., and Tran L., 2019, The CRISPR/Cas9 system and its applications in crop genome editing, Critical Reviews in Biotechnology, 39(3): 321-336. https://doi.org/10.1080/07388551.2018.1554621 Bhat M., Mir R., Kumar V., Shah A., Zargar S., Rahman S., and Jan A., 2021, Mechanistic insights of CRISPR/Cas mediated genome editing towards enhancing abiotic stress tolerance in plants, Physiologia Plantarum, 172(2): 1255-1268. https://doi.org/10.1111/ppl.13359 Biswas D., Saha S., and Dey A., 2021, CRISPR-Cas genome-editing tool in plant abiotic stress-tolerance, Plant Gene, 26: 100286. https://doi.org/10.1016/J.PLGENE.2021.100286 Bortesi L., and Fischer R., 2015, The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnology Advances, 33(1): 41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006 Chen K., Wang Y., Zhang R., Zhang H., and Gao C., 2019, CRISPR/Cas genome editing and precision plant breeding in agriculture, Annual Review of Plant Biology, 70(1): 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049 Cui X., Balcerzak M., Schernthaner J., Babic V., Datla R., Brauer E., Labbé N., Subramaniam R., and Ouellet T., 2019, An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat, Plant Methods, 15: 119. https://doi.org/10.1186/s13007-019-0500-2 Doench J., Fusi N., Sullender M., Hegde M., Vaimberg E., Donovan K., Smith I., Tothova Z., Wilen C., Orchard, R., Virgin H., Listgarten J., and Root D., 2015, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nature Biotechnology, 34(2): 184-191. https://doi.org/10.1038/nbt.3437 Erdoğan İ., Cevher-Keskin B., Bilir Ö., Hong Y., and Tör M., 2023, Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance, Biology, 12(7): 1037. https://doi.org/10.3390/biology12071037 Eş I., Gavahian M., Martí-Quijal F., Lorenzo J., Khaneghah A., Tsatsanis C., Kampranis S., and Barba F., 2019, The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges, Biotechnology Advances, 37(3): 410-421. https://doi.org/10.1016/j.biotechadv.2019.02.006 Haque E., Taniguchi H., Hassan M., Bhowmik P., Karim M., Śmiech M., Zhao K., Rahman M., and Islam T., 2018, Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges, Frontiers in Plant Science, 9: 617. https://doi.org/10.3389/fpls.2018.00617 Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., and Venkataraman G., 2018, CRISPR for crop improvement: an update review, Frontiers in Plant Science, 9: 985. https://doi.org/10.3389/fpls.2018.00985 Jiang W., Zhou H., Bi H., Fromm M., Yang B., and Weeks D., 2013, Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Research, 41(20): e188-e188. https://doi.org/10.1093/nar/gkt780 Karmacharya A., Li D., Leng Y., Shi G., Liu Z., Yang S., Du Y., Dai W., and Zhong S., 2023, Targeting disease susceptibility genes in wheat through wide hybridization with maize expressing Cas9 and guide RNA, Molecular Plant-Microbe Interactions, 36(9): 554-557. https://doi.org/10.1094/MPMI-01-23-0004-SC Karunarathne S., Walker E., Sharma D., Li C., and Han Y., 2023, Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance, Journal of Zhejiang University-SCIENCE B, 24(12): 1069-1092. https://doi.org/10.1631/jzus.B2200552
RkJQdWJsaXNoZXIy MjQ4ODYzNA==