BM_2024v15n6

Bioscience Methods 2024, Vol.15, No.6, 302-314 http://bioscipublisher.com/index.php/bm 313 Kingsolver M., Huang Z., and Hardy R., 2013, Insect antiviral innate immunity: pathways, effectors, and connections, Journal of Molecular Biology, 425(24): 4921-4936. https://doi.org/10.1016/j.jmb.2013.10.006 Lazzaro B., 2018, Detecting adaptation with genome-scale molecular evolutionary analysis: an educational primer for use with “RNA interference pathways display high rates of adaptive protein evolution in multiple invertebrates”, Genetics, 210(3): 773-780. https://doi.org/10.1534/genetics.118.301453 Lin S., Cohen L., and Wasserman S., 2020, Effector specificity and function in Drosophila innate immunity: getting AMPed and dropping Boms, PLoS Pathogens, 16(5): e1008480. https://doi.org/10.1371/journal.ppat.1008480 Liu H., Chen S., Chen Q., Pu D., Chen Z., Liu Y., and Liu X., 2022, The first mitochondrial genomes of the family Haplodiplatyidae (Insecta: Dermaptera) reveal intraspecific variation and extensive gene rearrangement, Biology, 11(6): 807. https://doi.org/10.3390/biology11060807 Luecke S., Sheu K., and Hoffmann A., 2021, Stimulus-specific responses in innate immunity: multilayered regulatory circuits, Immunity, 54(9): 1915-1932. https://doi.org/10.1016/j.immuni.2021.08.018 Meunier J., 2023, The biology and social life of earwigs (Dermaptera), Annual Review of Entomology, 69(1): 259-276. https://doi.org/10.1146/annurev-ento-013023-015632 Mueller S., Gausson V., Vodovar N., Deddouche S., Troxler L., Perot J., Pfeffer S., Hoffmann J., Saleh M., and Imler J., 2010, RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila, Proceedings of the National Academy of Sciences, 107(45): 19390-19395. https://doi.org/10.1073/pnas.1014378107 Naegle M., Mugleston J., Bybee S., and Whiting M., 2016, Reassessing the phylogenetic position of the epizoic earwigs (Insecta: Dermaptera), Molecular Phylogenetics and Evolution, 100: 382-390. https://doi.org/10.1016/j.ympev.2016.03.012 Nakad R., Nakad R., Snoek L., Yang W., Ellendt S., Schneider F., Mohr T., Rösingh L., Masche A., Rosenstiel P., Dierking K., Kammenga J., and Schulenburg H., 2016, Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1, BMC Genomics, 17: 1-20. https://doi.org/10.1186/s12864-016-2603-8 Nayak A., Tassetto M., Kunitomi M., and Andino R., 2013, RNA interference-mediated intrinsic antiviral immunity in invertebrates, In: Current Topics in Microbiology and Immunology, Intrinsic Immunity, 371: 183-200. https://doi.org/10.1007/978-3-642-37765-5_7 Netea M., Joosten L., Meer J., Kullberg B., and Veerdonk F., 2015, Immune defence against Candida fungal infections, Nature Reviews Immunology, 15(10): 630-642. https://doi.org/10.1038/nri3897 Núñez-Pascual V., Calleja F., Pardo R., Sarrazin A., and Irles P., 2022, The ring-legged earwig Euborellia annulipes as a new model for oogenesis and development studies in insects, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 340(1): 18-33. https://doi.org/10.1002/jez.b.23121 Pasupuleti M., Schmidtchen A., and Malmsten M., 2012, Antimicrobial peptides: key components of the innate immune system, Critical Reviews in Biotechnology, 32(2): 143-171. https://doi.org/10.3109/07388551.2011.594423 Patel S., and Akhtar N., 2017, Antimicrobial peptides (AMPs): the quintessential 'offense and defense' molecules are more than antimicrobials, Biomedicine & Pharmacotherapy, 95: 1276-1283. https://doi.org/10.1016/j.biopha.2017.09.042 Rebl A., and Goldammer T., 2018, Under control: the innate immunity of fish from the inhibitors' perspective, Fish & Shellfish Immunology, 77: 328-349. https://doi.org/10.1016/j.fsi.2018.04.016 Romo M., Pérez-martínez D., and Ferrer C., 2016, Innate immunity in vertebrates: an overview, Immunology, 148(2): 125-139. https://doi.org/10.1111/imm.12597 Roulin A., Wu M., Pichon S., Arbore R., Kühn-Bühlmann S., Kölliker M., and Walser J., 2014, De Novo transcriptome hybrid assembly and validation in the European earwig (Dermaptera, Forficula auricularia), PLoS ONE, 9(4): e94098. https://doi.org/10.1371/journal.pone.0094098 Shanmugaraj B., Bulaon C., Malla A., and Phoolcharoen W., 2021, Biotechnological insights on the expression and production of antimicrobial peptides in plants, Molecules, 26(13): 4032. https://doi.org/10.3390/molecules26134032 Sheehan G., Farrell G., and Kavanagh K., 2020, Immune priming: the secret weapon of the insect world, Virulence, 11(1): 238-246. https://doi.org/10.1080/21505594.2020.1731137 Shokal U., and Eleftherianos I., 2017, Evolution and function of thioester-containing proteins and the complement system in the innate immune response, Frontiers in Immunology, 8: 759. https://doi.org/10.3389/fimmu.2017.00759

RkJQdWJsaXNoZXIy MjQ4ODYzNA==