BM_2024v15n6

Bioscience Methods 2024, Vol.15, No.6, 275-288 http://bioscipublisher.com/index.php/bm 287 Sabahannur S., Netty N., Ralle A., and Ikhsan M., 2023, The effects of blanching method and drying temperature on the quality of sweet potato flour (Ipomoea batatas L.), AGRITEKNO: Jurnal Teknologi Pertanian, 12(2): 143-152. https://doi.org/10.30598/jagritekno.2023.12.2.143 Sanchez P., Hashim N., Shamsudin R., and Nor M., 2020, Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: a review, Trends in Food Science & Technology, 96: 208-221. https://doi.org/10.1016/j.tifs.2019.12.027 Schweinberger C., Trierweiler J., and Trierweiler L., 2018, Preheating followed by simultaneous viscosity reduction, hydrolysis, and fermentation: simplifying the process of ethanol production from sweet potato, BioEnergy Research, 12: 94-102. https://doi.org/10.1007/s12155-018-9953-9 Sebben J., Trierweiler L., and Trierweiler J., 2017, Orange‐fleshed sweet potato flour obtained by drying in microwave and hot air, Journal of Food Processing and Preservation, 41(1): e12744. https://doi.org/10.1111/JFPP.12744 Shaari N., Mnemoi F., Shamsudin R., Nor M., and Hashim N., 2021, Effects of different skin processing conditions of Japanese sweet potato powder (Ipomoea batatas) on physicochemical properties, Advances in Agricultural and Food Research Journal, 4(1). https://doi.org/10.36877/aafrj.a0000191 Sheikha A., and Ray R., 2017, Potential impacts of bioprocessing of sweet potato: review, Critical Reviews in Food Science and Nutrition, 57(3): 455-471. https://doi.org/10.1080/10408398.2014.960909 Shekhar S., Mishra D., Buragohain A., Chakraborty S., and Chakraborty N., 2015, Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.), Food Chemistry, 173: 957-965. https://doi.org/10.1016/j.foodchem.2014.09.172 Simões A., Almeida S., Borges C., Fonseca K., Júnior A., Albuquerque J., Corrêa C., Minatel I., Morais M., Diamante M., and Lima G., 2020, Delaying the harvest induces bioactive compounds and maintains the quality of sweet potatoes, Journal of Food Biochemistry, 44(8): e13322. https://doi.org/10.1111/jfbc.13322 Song X., Yu X., Zhou C., Xu B., Chen L., Yagoub A., Emeka O., and Wahia H., 2021, Conveyor belt catalytic infrared as a novel apparatus for blanching processing applied to sweet potatoes in the industrial scale, Lwt, 149: 111827. https://doi.org/10.1016/J.LWT.2021.111827 Toy J., Song Z., and Huang D., 2022, Resin glycosides in aerial parts of Ipomoea batatas are potent lipase inhibitors: potential upcycling of sweet potato by-products to combat obesity, Food & Function, 13(9): 5353-5364. https://doi.org/10.1039/d2fo00555g Vannini M., Marchese P., Sisti L., Saccani A., Mu T., Sun H., and Celli A., 2021, Integrated efforts for the valorization of sweet potato by-products within a circular economy concept: biocomposites for packaging applications close the loop, Polymers, 13(7): 1048. https://doi.org/10.3390/polym13071048 Vithu P., Dash S., and Rayaguru K., 2019, Post-harvest processing and utilization of sweet potato: a review, Food Reviews International, 35(8): 726-762. https://doi.org/10.1080/87559129.2019.1600540 Vizzotto M., Pereira E., Vinholes J., Munhoz P., Ferri N., Castro L., and Krolow A., 2017, Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: in natura and thermally processed, Ciência Rural, 47(4): e20151385. https://doi.org/10.1590/0103-8478CR20151385 Vorobiev E., and Lebovka N., 2022, Processing of sugar beets assisted by pulsed electric fields, Research in Agricultural Engineering, 68(2): 63-79. https://doi.org/10.17221/91/2021-rae Wang Q., Li Y., Sun D., and Zhu Z., 2018, Enhancing food processing by pulsed and high voltage electric fields: principles and applications, Critical Reviews in Food Science and Nutrition, 58(13): 2285-2298. https://doi.org/10.1080/10408398.2018.1434609 Wang S., Nie S., and Zhu F., 2016, Chemical constituents and health effects of sweet potato, Food research international, 89: 90-116. https://doi.org/10.1016/j.foodres.2016.08.032 Weber C., Trierweiler L., and Trierweiler J., 2020, Food waste biorefinery advocating circular economy: bioethanol and distilled beverage from sweet potato, Journal of Cleaner Production, 268: 121788. https://doi.org/10.1016/j.jclepro.2020.121788 Xiao W.W., and Xuan S., 2018, Design of control system for automatic production line of sweet potato powder based on PLC, In: Proceedings of the International Symposium on Big Data and Artificial Intelligence, pp.215-218 https://doi.org/10.1145/3305275.3305318 Ye F., Xiao L., Liang Y., Zhou Y., and Zhao G., 2019, Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules, Carbohydrate Polymers, 213: 79-88. https://doi.org/10.1016/j.carbpol.2019.02.077 Yvonne M., and Pontsho T., 2023, Responses of the nutritional value of the orange fleshed ‘Bophelo’ sweet potato (Ipomoea batatas L.) cultivar under various processing techniques, Research on Crops, 24(1): 139-148. https://doi.org/10.31830/2348-7542.2023.roc-11152

RkJQdWJsaXNoZXIy MjQ4ODYzNA==