Bioscience Methods 2024, Vol.15, No.6, 275-288 http://bioscipublisher.com/index.php/bm 286 Laveriano-Santos E., López-Yerena A., Jaime-Rodríguez C., González-Coria J., Lamuela-Raventós R., Vallverdú-Queralt A., Romanyà J., and Perez M., 2022, Sweet potato is not simply an abundant food crop: a comprehensive review of its phytochemical constituents, biological activities, and the effects of processing, Antioxidants, 11(9): 1648. https://doi.org/10.3390/antiox11091648 Leonard W., Zhang P., Ying D., and Fang Z., 2020, Application of extrusion technology in plant food processing byproducts: an overview, Comprehensive Reviews in Food Science and Food Safety, 19(1): 218-246. https://doi.org/10.1111/1541-4337.12514 Liu T., Dodds E., Leong S., Eyres G., Burritt D., and Oey I., 2017, Effect of pulsed electric fields on the structure and frying quality of “kumara” sweet potato tubers, Innovative Food Science & Emerging Technologies, 39: 197-208. https://doi.org/10.1016/J.IFSET.2016.12.010 Lyu R., Ahmed S., Fan W., Yang J., Wu X., Zhou W., Zhang P., Yuan L., and Wang H., 2021, Engineering properties of sweet potato starch for industrial applications by biotechnological techniques including genome editing, International Journal of Molecular Sciences, 22(17): 9533. https://doi.org/10.3390/ijms22179533 Ma D., 2019, Global market trends, challenges, and the future of the sweet potato processing industry, In: Sweet Potato, Academic Press, pp.381-392. https://doi.org/10.1016/B978-0-12-813637-9.00014-4 Mekonen N., Nahusenay H., and Hailu K., 2022, Effect of Processing methods on nutrient contents of sweet potato (Ipomoea batatas (L.) Lam.) varieties grown in Ethiopia, Journal of Food and Nutrition Sciences, 12(2): 36-41. https://doi.org/10.11648/j.jfns.20221002.11 Montoro S., Lucas J., Santos D., and Costa M., 2019, Anaerobic co-digestion of sweet potato and dairy cattle manure: a technical and economic evaluation for energy and biofertilizer production, Journal of Cleaner Production, 226: 1082-1091. https://doi.org/10.1016/J.JCLEPRO.2019.04.148 Nahirñak V., Almasia N., González M., Massa G., Oneto C., Feingold S., Hopp H., and Rovere C., 2022, State of the art of genetic engineering in potato: from the first report to its future potential, Frontiers in Plant Science, 12: 768233. https://doi.org/10.3389/fpls.2021.768233 Niu D., Zeng X., Ren E., Xu F., Li J., Wang M., and Wang R., 2020, Review of the application of pulsed electric fields (PEF) technology for food processing in China, Food Research International, 137: 109715. https://doi.org/10.1016/J.FOODRES.2020.109715 Nogueira A., Sehn G., Rebellato A., Coutinho J., Godoy H., Chang Y., Steel C., and Clerici M., 2018, Yellow sweet potato flour: use in sweet bread processing to increase β-carotene content and improve quality, Anais da Academia Brasileira de Ciencias, 90(1): 283-293. https://doi.org/10.1590/0001-3765201820150804 Oladejo A., and Ma H., 2016, Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology, Journal of the Science of Food and Agriculture, 96(11): 3688-3693. https://doi.org/10.1002/jsfa.7552 Olatunde G., Henshaw F., Idowu M., and Tomlins K., 2015, Quality attributes of sweet potato flour as influenced by variety, pretreatment and drying method, Food Science & Nutrition, 4(4): 623-635. https://doi.org/10.1002/fsn3.325 Onwude D., Hashim N., Abdan K., Janius R., and Chen G., 2018, Investigating the influence of novel drying methods on sweet potato (Ipomoea batatas L.): kinetics, energy consumption, color, and microstructure, Journal of Food Process Engineering, 41(4): e12686. https://doi.org/10.1111/JFPE.12686 Palupi E., Delina N., Nurdin N., Navratilova H., Rimbawan R., and Sulaeman A., 2023, Kidney bean substitution ameliorates the nutritional quality of extruded purple sweet potatoes: evaluation of chemical composition, glycemic index, and antioxidant capacity, Foods, 12(7): 1525. https://doi.org/10.3390/foods12071525 Pan Y., Chen L., Pang L., Chen X., Jia X., and Li X., 2020, Ultrasound treatment inhibits browning and improves antioxidant capacity of fresh-cut sweet potato during cold storage, RSC Advances, 10(16): 9193-9202. https://doi.org/10.1039/c9ra06418d Parniakov O., Lebovka N., Wiktor A., Alles M., Hill K., and Toepfl S., 2022, Applications of pulsed electric fields for processing potatoes: examples and equipment design, Research in Agricultural Engineering, 68(2): 47-62. https://doi.org/10.17221/90/2021-rae Peña M., Rábago-Panduro L., Soliva-Fortuny R., Martín‐Belloso O., and Welti‐Chanes J., 2021, Pulsed electric fields technology for healthy food products, Food Engineering Reviews, 13: 509-523. https://doi.org/10.1007/s12393-020-09277-2 Qiao H., Shao H., Zheng X., Liu J., Liu J., Huang J., Zhang C., Liu Z., Wang J., and Guan W., 2020, Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion, Food Chemistry, 335: 127522. https://doi.org/10.1016/j.foodchem.2020.127522 Rashid M., Liu K., Jatoi M., Safdar B., Lv D., and Li Q., 2022, Energy efficient drying technologies for sweet potatoes: operating and drying mechanism, quality-related attributes, Frontiers in Nutrition, 9: 1040314. https://doi.org/10.3389/fnut.2022.1040314
RkJQdWJsaXNoZXIy MjQ4ODYzNA==