BM_2024v15n6

Bioscience Methods 2024, Vol.15, No.6, 264-274 http://bioscipublisher.com/index.php/bm 273 Haque E., Shirasawa K., Suematsu K., Tabuchi H., Isobe S., and Tanaka M., 2023, Polyploid GWAS reveals the basis of molecular marker development for complex breeding traits including starch content in the storage roots of sweet potato, Frontiers in Plant Science, 14: 1181909. https://doi.org/10.3389/fpls.2023.1181909 Harsselaar J., Claussen J., Lubeck J., Wörlein N., Uhlmann N., Sonnewald U., and Gerth S., 2021, X-ray CT phenotyping reveals bi-phasic growth phases of potato tubers exposed to combined abiotic stress, Frontiers in Plant Science, 12: 613108. https://doi.org/10.3389/fpls.2021.613108 Huang W.Z., and Hong Z.M., 2024, Marker-assisted selection in cassava: from theory to practice, Plant Gene and Trait, 15(1): 33-43. https://doi.org/10.5376/pgt.2024.15.0005 Jonik C., Sonnewald U., Hajirezaei M., Flugge U., and Ludewig F., 2012, Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants, Plant Biotechnology Journal, 10(9): 1088-1098. https://doi.org/10.1111/j.1467-7652.2012.00736.x Kar D., Panda C., Sahu G., Tripathy P., Das A., Sahu S., and Mohanty A., 2022, Assessment of growth and yield of sweet potato genotypes, International Journal of Environment and Climate Change, 12(11): 3650-3656. https://doi.org/10.9734/ijecc/2022/v12i111414 Katayama K., Komae K., Tamiya S., Khoyama K., Nakatani M., and Komaki K., 2006, Studies on the breeding for improving starch properties in sweet potato, Japan Agricultural Research Quarterly: JARQ, 40(2): 115-122. https://doi.org/10.6090/JARQ.40.115 Lamaro G., Tsehaye Y., Girma A., Vannini A., Fedeli R., and Loppi S., 2023, Evaluation of yield and nutraceutical traits of orange-fleshed sweet potato storage roots in two agro-climatic zones of northern Ethiopia, Plants, 12(6): 1319. https://doi.org/10.3390/plants12061319 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University-SCIENCE B, 22(4): 253-284. https://doi.org/10.1631/jzus.B2100009 Li L., Strahwald J., Hofferbert H., Lubeck J., Tacke E., Junghans H., Wunder J., and Gebhardt C., 2005, DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones, Genetics, 170(2): 813-821. https://doi.org/10.1534/GENETICS.104.040006 Li Y.Z., 2024, Starch biosynthesis and engineering starch yield and properties in cassava, Molecular Plant Breeding, 15(2): 63-69. https://doi.org/10.5376/mpb.2024.15.0008 Lin K., Lai Y., Chang K., Chen Y., Hwang S., and Lo H., 2007, Improving breeding efficiency for quality and yield of sweet potato, Botanical Studies, 48: 283-292. Lyu R., Ahmed S., Fan W., Yang J., Wu X., Zhou W., Zhang P., Yuan L., and Wang H., 2021, Engineering properties of sweet potato starch for industrial applications by biotechnological techniques including genome editing, International Journal of Molecular Sciences, 22(17): 9533. https://doi.org/10.3390/ijms22179533 Menéndez C., Ritter E., Schäfer-Pregl R., Walkemeier B., Kalde A., Salamini F., and Gebhardt C., 2002, Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes, Genetics, 162(3): 1423-1434. https://doi.org/10.1093/genetics/162.3.1423 Moeinizade S., Kusmec A., Hu G., Wang L., and Schnable P., 2020, Multi-trait genomic selection methods for crop improvement, Genetics, 215(4): 931-945. https://doi.org/10.1534/genetics.120.303305 Moreira F., Oliveira H., Volenec J., Rainey K., and Brito L., 2020, Integrating high-throughput phenotyping and statistical genomic methods to genetically improve longitudinal traits in crops, Frontiers in Plant Science, 11: 681. https://doi.org/10.3389/fpls.2020.00681 Otoboni M., Oliveira D., Vargas P., Pavan B., and Andrade M., 2020, Genetic parameters and gain from selection in sweet potato genotypes with high beta-carotene content, Crop Breeding and Applied Biotechnology, 20(3): e31632038. https://doi.org/10.1590/1984-70332020v20n3a42 Ren Z., He S., Zhao N., Zhai H., and Liu Q., 2018, A sucrose non‐fermenting‐1‐related protein kinase‐1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato, Plant Biotechnology Journal, 17(1): 21-32. https://doi.org/10.1111/pbi.12944 Ribaut J., and Ragot M., 2006, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58(2): 351-360. https://doi.org/10.1093/JXB/ERL214 Ritchie M., Holzinger E., Li R., Pendergrass S., and Kim D., 2015, Methods of integrating data to uncover genotype–phenotype interactions, Nature Reviews Genetics, 16(2): 85-97. https://doi.org/10.1038/nrg3868 Rosero A., Burgos-Paz W., Araujo H., Pastrana-Vargas I., Martínez R., Pérez J., and Espitia L., 2023, Sweet potato varietal selection using combined methods of multi-trait index, genetic gain and stability from multi-environmental evaluations, Horticulturae, 9(9): 974. https://doi.org/10.3390/horticulturae9090974 Shakoor N., Lee S., and Mockler T., 2017, High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field, Current Opinion in Plant Biology, 38: 184-192. https://doi.org/10.1016/j.pbi.2017.05.006

RkJQdWJsaXNoZXIy MjQ4ODYzNA==