Bioscience Methods 2024, Vol.15, No.6, 255-263 http://bioscipublisher.com/index.php/bm 262 Cheng F., 2024, Application of genome-wide association study in crop disease resistance breeding, Field Crop, 7(1): 1-8. https://doi.org/10.5376/fc.2024.07.0001 Fallen B., Allen F., Kopsell D., Saxton A., McHale L., Shannon J., Kantartzi S., Cardinal A., Cregan P., Hyten D., and Pantalone V., 2015, Selective genotyping for marker assisted selection strategies for soybean yield improvement, Plant Genetics, Genomics, and Biotechnology, 2(1): 95-119. https://doi.org/10.5147/PGGB.V2I1.156 Francia E., Tacconi G., Crosatti C., Barabaschi D., Bulgarelli D., Dall’Aglio E., and Vale G., 2005, Marker assisted selection in crop plants, Plant Cell, Tissue and Organ Culture, 82: 317-342. https://doi.org/10.1007/s11240-005-2387-z Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R. A., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, Journal of Genetic Engineering and Biotechnology, 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Jena K., and Mackill D., 2008, Molecular markers and their use in marker-assisted selection in rice, Crop Science, 48(4): 1266-1276. https://doi.org/10.2135/CROPSCI2008.02.0082 Jiang B., Cheng Y., Cai Z., Li M., Jiang Z., Ma R., Yuan Y., Xia Q., and Nian H., 2020, Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing, BMC Genomics, 21: 1-11. https://doi.org/10.1186/s12864-020-6668-z Kadam S., Vuong T., Qiu D., Meinhardt C., Song L., Deshmukh R., Patil G., Wan J., Valliyodan B., Scaboo A., Shannon J., and Nguyen H., 2016, Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding, Plant Science, 242: 342-350. https://doi.org/10.1016/j.plantsci.2015.08.015 Karhoff S., Vargas-Garcia C., Lee S., Mian M., Graham M., Dorrance A., and McHale L., 2022, Identification of candidate genes for a major quantitative disease resistance locus from soybean PI 427105B for resistance to Phytophthora sojae, Frontiers in Plant Science, 13: 893652. https://doi.org/10.3389/fpls.2022.893652 Kim J., Kim K., Jung J., Kang B., Lee J., Ha B., and Kang S., 2020, Validation of marker-assisted selection in soybean breeding program for pod shattering resistance, Euphytica, 216: 1-9. https://doi.org/10.1007/s10681-020-02703-w Kim K., Vuong T., Qiu D., Robbins R., Shannon J., Li Z., and Nguyen H., 2016, Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean, Theoretical and Applied Genetics, 129: 2295-2311. https://doi.org/10.1007/s00122-016-2816-x Ludwików A., Cieśla A., Arora P., Das G., Rao G., and Das R., 2015, Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar, Frontiers in Plant Science, 6: 698. https://doi.org/10.3389/fpls.2015.00698 Maroof M., Jeong S., Gunduz I., Tucker D., Buss G., and Tolin S., 2008, Pyramiding of soybean mosaic virus resistance genes by marker‐assisted selection, Crop Science, 48(2): 517-526. https://doi.org/10.2135/CROPSCI2007.08.0479 Mei H., Liu Y., Cui C., Hu C., Xie F., Zheng L., Du Z., Wu K., Jiang X., Zheng Y., and Ma Q., 2021, QTL mapping of yield-related traits in sesame, Molecular Breeding, 41(7): 43. https://doi.org/10.1007/s11032-021-01236-x Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 Miklas P., Kelly J., Beebe S., and Blair M., 2006, Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding, Euphytica, 147: 105-131. https://doi.org/10.1007/s10681-006-4600-5 Miller M., Song Q., and Li Z., 2023, Genomic selection of soybean (Glycine max) for genetic improvement of yield and seed composition in a breeding context, The Plant Genome, 16(4): e20384. https://doi.org/10.1002/tpg2.20384 Ngosong C., Tatah B., Olougou M., Suh C., Nkongho R., Ngone M., Achiri D., Tchakounté G., and Ruppel S., 2022, Inoculating plant growth-promoting bacteria and arbuscular mycorrhiza fungi modulates rhizosphere acid phosphatase and nodulation activities and enhance the productivity of soybean (Glycine max), Frontiers in Plant Science, 13: 934339. https://doi.org/10.3389/fpls.2022.934339 Rani R., Raza G., Tung M., Rizwan M., Ashfaq H., Shimelis H., Razzaq M., and Arif M., 2023, Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers, PLoS One, 18(5): e0286099. https://doi.org/10.1371/journal.pone.0286099 Santana F., Silva M., Guimarães J., Ferreira M., Pereira W., Piovesan N., and Barros E., 2014, Marker-assisted selection strategies for developing resistant soybean plants to cyst nematode, Crop Breeding and Applied Biotechnology, 14: 180-186. https://doi.org/10.1590/1984-70332014V14N3A27
RkJQdWJsaXNoZXIy MjQ4ODYzNA==