Bioscience Methods 2024, Vol.15, No.6, 356-368 http://bioscipublisher.com/index.php/bm 367 He Z., Li M., Cai Z., Zhao R., Hong T., Yang Z., and Zhang Z., 2021, Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato, Agricultural Water Management, 243: 106360. https://doi.org/10.1016/j.agwat.2020.106360 Ji J., Yang J., Zhang B., Wang S., Zhang G., and Lin L., 2020, Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit, Pesticide Biochemistry and Physiology, 166: 104581. https://doi.org/10.1016/j.pestbp.2020.104581 Karim M., Hao P., Nordin N., Qiu C., Zeeshan M., Khan A., and Shamsi I., 2020, CO2 enrichment using CRAM fermentation improves growth, physiological traits and yield of cherry tomato (Solanum lycopersicumL.), Saudi Journal of Biological Sciences, 27(4): 1041-1048. https://doi.org/10.1016/J.SJBS.2020.02.020 Kavitha G., Kerketta A., Topno S., and Bahadur V., 2023, Effect of plant growth regulators on cherry tomato (Solanum lycopersicum var. cerasiforme), International Journal of Environment and Climate Change, 13(8): 581-586. https://doi.org/10.9734/ijecc/2023/v13i81986 Lee H., Lee J., Hong K., Kwon D., Cho M., Hwang I., and Ahn Y., 2021, Improving growth and yield in cherry tomato by using rootstocks, Journal of Bio-Environment Control, 30(3): 196-205. https://doi.org/10.12791/ksbec.2021.30.3.196 Li H., Mei X., Wang J., Huang F., Hao W., and Li B., 2021, Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: a meta-analysis in China, Agricultural Water Management, 244: 106534. https://doi.org/10.1016/J.AGWAT.2020.106534 Li T., Cui J., Guo W., She Y., and Li P., 2023, The influence of organic and inorganic fertilizer applications on nitrogen transformation and yield in greenhouse tomato cultivation with surface and drip irrigation techniques, Water, 15(20): 3546. https://doi.org/10.3390/w15203546 Lu J., Shao G., Cui J., Wang X., and Keabetswe L., 2019, Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: a meta-analysis, Agricultural Water Management, 222: 301-312. https://doi.org/10.1016/J.AGWAT.2019.06.008 Lu J., Shao G., Yang G., Zhang K., Wei Q., and Cheng J., 2021, Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: a meta-analysis, Agricultural Water Management, 243: 106427. https://doi.org/10.1016/j.agwat.2020.106427 Luo H., and Li F., 2018, Tomato yield, quality and water use efficiency under different drip fertigation strategies, Scientia Horticulturae, 235: 181-188. https://doi.org/10.1016/J.SCIENTA.2018.02.072 Maboko M., and Plooy C., 2008, Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon esculentum), South African Journal of Plant and Soil, 25(3): 178-181. https://doi.org/10.1080/02571862.2008.10639914 Moccia S., Chiesa A., Oberti A., and Tittonell P., 2006, Yield and quality of sequentially grown cherry tomato and lettuce under long-term conventional, low-input and organic soil management systems, European Journal of Horticultural Science, 71(4): 183-191. Naik S., Hongal S., Harshavardhan M., Chandan K., Kumar A., , A., Kyriacou M., Rouphael Y., and Kumar P., 2021, Productive characteristics and fruit quality traits of cherry tomato hybrids as modulated by grafting on different Solanum spp. rootstocks under Ralstonia solanacearum infested greenhouse soil, Agronomy, 11(7): 1311. https://doi.org/10.3390/agronomy11071311 Polo J., and Mata P., 2018, Evaluation of a biostimulant (Pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering, and yield of gold cherry tomatoes grown under low stress ambient field conditions, Frontiers in Plant Science, 8: 2261. https://doi.org/10.3389/fpls.2017.02261 Raynaldo F., Dhanasekaran S., Ngea G., Yang Q., Zhang X., and Zhang H., 2021, Investigating the biocontrol potentiality of Wickerhamomyces anomalus against postharvest gray mold decay in cherry tomatoes, Scientia Horticulturae, 285: 110137. https://doi.org/10.1016/J.SCIENTA.2021.110137 Salgado G., Ambrosano E., Rossi F., Otsuk I., Ambrosao G., Patri P., Henrique C., Santana C., Muraoka T., and Trivelin P., 2021, Yield and nutrient concentrations of organic cherry tomatoes and legumes grown in intercropping systems in rotation with maize, Biological Agriculture & Horticulture, 38(2): 94-112. https://doi.org/10.1080/01448765.2021.1992796 Shabbir A., Mao H., Ullah I., Buttar N., Ajmal M., and Lakhiar I., 2020a, Effects of drip irrigation emitter density with various irrigation levels on physiological parameters, root, yield, and quality of cherry tomato, Agronomy, 10(11): 1685. https://doi.org/10.3390/agronomy10111685 Shabbir A., Mao H., Ullah I., Buttar N., Ajmal M., and Solangi K., 2020b, Improving water use efficiency by optimizing the root distribution patterns under varying drip emitter density and drought stress for cherry tomato, Agronomy, 11(1): 3. https://doi.org/10.3390/agronomy11010003 Silva V., Ceará B., Rabelo J., Costa R., Silva A., and Almeida A., 2019, Response of the cherry tomato to watering and ground cover under organic cultivation, Australian Journal of Crop Science, 13(2): 214-220. https://doi.org/10.21475/AJCS.19.13.02.P1220
RkJQdWJsaXNoZXIy MjQ4ODYzNA==