Bioscience Methods 2024, Vol.15, No.5, 244-254 http://bioscipublisher.com/index.php/bm 253 genomic, phytochemical, and pharmacological data will be crucial in developing standardized and high-quality medicinal products. Overall, the continued exploration of A. macrocephala holds promise for advancing both traditional and modern medicinal practices, as well as enhancing agricultural practices for this valuable herb. Acknowledgments The authors extend our sincere thanks to two anonymous peer reviewers for their invaluable feedback on this manuscript, whose critical evaluations and constructive suggestions have greatly contributed to the improvement of our manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. Reference Bailly C., 2020, Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: antioxidant, anti-inflammatory and anticancer properties, European Journal of Pharmacology, 891: 173735. https://doi.org/10.1016/j.ejphar.2020.173735 Cai H., Chen C., Wang Y., and Wang H., 2020, The complete plastome sequence of Atractylodes macrocephala (Asteraceae: Cardueae), an important medicinal plant in East Asia, Mitochondrial DNA Part B, 5(1): 951-952. https://doi.org/10.1080/23802359.2020.1719926 Chen C., Zheng L., Ma Q., Zhou W., Lu Y., Zhao Y., and Fu C., 2018, Impacts of domestication on population genetics of a traditional Chinese medicinal herb, Atractylodes macrocephala (Asteraceae), Journal of Systematics and Evolution, 57(3): 222-233. https://doi.org/10.1111/jse.12446 Fan H., Zhang T., Sheng J., Zhou Y., and Kai G., 2022, First report of leaf spot of Atractylodes macrocephala caused by Fusarium commune in Zhejiang province, China, Plant Disease, 107(2): 577. https://doi.org/10.1094/PDIS-11-20-2501-PDN Gu S., Li L., Huang H., Wang B., and Zhang T., 2019, Antitumor, antiviral, and anti-inflammatory efficacy of essential oils fromAtractylodes macrocephala Koidz. produced with different processing methods, Molecules, 24(16): 2956. https://doi.org/10.3390/molecules24162956 Jeong D., Dong G., Lee H., and Ryu J., 2019, Anti-Inflammatory Compounds fromAtractylodes macrocephala, Molecules, 24(10): 1859. https://doi.org/10.3390/molecules24101859 Li H., and Yang G., 2020, The complete chloroplast genome of Atractylodes macrocephala Koidz. (Asteraceae), Mitochondrial DNA Part B, 5(3): 2060-2061. https://doi.org/10.1080/23802359.2020.1763867 Liu C., Wang S., Xiang Z., Xu T., He M., Xue Q., Song H., Gao P., and Cong Z., 2022, The chemistry and efficacy benefits of polysaccharides from Atractylodes macrocephala Koidz, Frontiers in Pharmacology, 13: 952061. https://doi.org/10.3389/fphar.2022.952061 Qian X., Jiang Y., Luo Y., and Jiang Y., 2022, The anti-hyperuricemia and anti-inflammatory effects of Atractylodes macrocephala in hyperuricemia and gouty arthritis rat models, Combinatorial Chemistry & High Throughput Screening, 26(5): 950-964. https://doi.org/10.2174/1386207325666220603101540 Shirahata T., Ishikawa H., Kudo T., Takada Y., Hoshino A., Taga Y., Minakuchi Y., Hasegawa T., Horiguchi R., Hirayama T., Konishi T., Takemoto H., Sato N., Aragane M., Oikawa T., Odaguchi H., Hanawa T., Kodaira E., Fukuda T., and Kobayashi Y., 2021, Metabolic fingerprinting for discrimination of DNA-authenticated Atractylodes plants using 1H NMR spectroscopy, Journal of Natural Medicines, 75: 475-488. https://doi.org/10.1007/s11418-020-01471-0 Si J., Zhang H., Yu M., Li L., Zhang H., Jia H., Ma L., Qin L., Zhang T., and Zou Z., 2021, Sesquiterpenoids from the rhizomes of Atractylodes macrocephala and their protection against lipopolysaccharide-induced neuroinflammation in microglia BV-2 cells, Journal of Functional Foods, 83: 104541. https://doi.org/10.1016/J.JFF.2021.104541 Wang L., Zhang H., Wu X., Wang Z., Fang W., Jiang M., Chen H., Huang L., and Liu C., 2020, Phylogenetic relationships of Atractylodes lancea, A. chinensis and A. macrocephala, revealed by complete plastome and nuclear gene sequences, PLoS ONE, 15(1): e0227610. https://doi.org/10.1371/journal.pone.0227610 Wang S., Ding L., Su J., Peng L., Song L., and Wu X., 2018, Atractylmacrols A-E, sesquiterpenes from the rhizomes of Atractylodes macrocephala, Phytochemistry Letters, 23: 127-131. https://doi.org/10.1016/J.PHYTOL.2017.11.021 Wu Y., Lu W., Geng Y., Yu C., Sun H., Kim Y., Zhang G., and Kim T., 2020, Antioxidant, antimicrobial and anti-inflammatory activities of essential oil derived from the wild rhizome of Atractylodes macrocephala, Chemistry & Biodiversity, 17(8): e2000268. https://doi.org/10.1002/cbdv.202000268 Yang L., Yu H., Hou A., Man W., Wang S., Zhang J., Wang X., Zheng S., Jiang H., and Kuang H., 2021, A review of the ethnopharmacology, phytochemistry, pharmacology, application, quality control, processing, toxicology, and pharmacokinetics of the dried rhizome of Atractylodes macrocephala, Frontiers in Pharmacology, 12: 727154. https://doi.org/10.3389/fphar.2021.727154
RkJQdWJsaXNoZXIy MjQ4ODYzNA==