Bioscience Methods 2024, Vol.15, No.5, 226-236 http://bioscipublisher.com/index.php/bm 235 Baye W., Xie Q., and Xie P., 2022, Genetic architecture of grain yield-related traits in sorghum and maize, International Journal of Molecular Sciences,23(5): 2405. https://doi.org/10.3390/ijms23052405 Bernardo R., and Yu J., 2007, Prospects for genomewide selection for quantitative traits in maize, Crop Science, 47(3): 1082-1090. https://doi.org/10.2135/CROPSCI2006.11.0690 Chen C., Liu X., Li S., Liu C., Zhang Y., Luo L., Miao L., Yang W., Xiao Z., Zhong Y., Li J., Chen R., and Chen S., 2022, Co-expression of transcription factors ZmC1 and ZmR2 establishes an efficient and accurate haploid embryo identification system in maize, The Plant Journal, 111(5): 1296-1307. https://doi.org/10.1111/tpj.15888 Collard B., Collard B., Jahufer M., Brouwer J., and Pang E., 2005, An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts, Euphytica, 142: 169-196. https://doi.org/10.1007/s10681-005-1681-5 Cooper M., Gho C., Leafgren R., Tang T., and Messina C., 2014, Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product, Journal of Experimental Botany, 65(21): 6191-6204. https://doi.org/10.1093/jxb/eru064 Daware A., Das S., Srivastava R., Badoni S., Singh A., Agarwal P., Parida S., and Tyagi A., 2016, An efficient strategy combining SSR markers-and advanced QTL-seq-driven QTL mapping unravels candidate genes regulating grain weight in rice, Frontiers in Plant Science, 7: 1535. https://doi.org/10.3389/fpls.2016.01535 Francia E., Tacconi G., Crosatti C., Barabaschi D., Bulgarelli D., Dall’Aglio E., and Vale G., 2005, Marker assisted selection in crop plants, Plant Cell, Tissue and Organ Culture, 82: 317-342. https://doi.org/10.1007/s11240-005-2387-z Gedil M., and Menkir A., 2019, An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa, Frontiers in Plant Science, 10: 1430. https://doi.org/10.3389/fpls.2019.01430 Guo T.X., 2024, Unraveling key genetic factors in corn quality improvement through GWAS, Maize Genomics and Genetics, 15(1): 9-16. https://doi.org/10.5376/mgg.2024.15.0002 Guo Z., Wang H., Tao J., Ren Y., Xu C., Wu K., Zou C., Zhang J., and Xu Y., 2019, Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize, Molecular Breeding, 39: 1-12. https://doi.org/10.1007/s11032-019-0940-4 Gupta H., Agrawal P., Mahajan V., Bisht G., Kumar A., Verma P., Srivastava A., Saha S., Babu R., Pant M., and Mani V., 2009, Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding, Current Science, 96(2): 230-237. Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26: 145-161. https://doi.org/10.1007/s11032-009-9359-7 Hamblin M., Warburton M., and Buckler E., 2007, Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness, PLoS ONE, 2(12): e1367. https://doi.org/10.1371/journal.pone.0001367 Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, Journal of Genetic Engineering and Biotechnology, 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Jones E., Sullivan H., Bhattramakki D., and Smith J., 2007, A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zeamays L.), Theoretical and Applied Genetics, 115(3): 361-371. https://doi.org/10.1007/s00122-007-0570-9 Kaur R., Kaur G., Vikal Y., Gill G., Sharma S., Singh J., Dhariwal G., Gulati A., Kaur A., Kumar A., and Chawla J., 2020, Genetic enhancement of essential amino acids for nutritional enrichment of maize protein quality through marker assisted selection, Physiology and Molecular Biology of Plants, 26: 2243-2254. https://doi.org/10.1007/s12298-020-00897-w Lande R., and Thompson R., 1990, Efficiency of marker-assisted selection in the improvement of quantitative traits, Genetics, 124(3): 743-756. https://doi.org/10.1093/genetics/124.3.743 Mammadov J., Chen W., Ren R., Pai R., Marchione W., Yalçin F., Witsenboer H., Greene T., Thompson S., and Kumpatla S., 2010, Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding, Theoretical and Applied Genetics, 121: 577-588. https://doi.org/10.1007/s00122-010-1331-8 Mbuya K., Nkongolo K., Narendrula R., Kalonji-Mbuyi A., and Kizungu R., 2012, Development of quality protein maize (QPM) inbred lines and genetic diversity assessed with issr markers in a maize breeding program, American Journal of Experimental Agriculture, 2: 626-640. https://doi.org/10.9734/AJEA/2012/1626
RkJQdWJsaXNoZXIy MjQ4ODYzNA==