Bioscience Methods 2024, Vol.15, No.5, 216-225 http://bioscipublisher.com/index.php/bm 224 Demirci Y., Zhang B., and Unver T., 2018, CRISPR/Cas9: An RNA‐guided highly precise synthetic tool for plant genome editing, Journal of Cellular Physiology, 233(3): 1844-1859. https://doi.org/10.1002/jcp.25970 Dong Z., Qin Q., Hu Z., Zhang X., Miao J., Huang L., Chen P., Lu C., and Pan M., 2020, CRISPR/Cas12a mediated genome editing enhances Bombyx mori resistance to BmNPV, Frontiers in Bioengineering and Biotechnology, 8: 841. https://doi.org/10.3389/fbioe.2020.00841 Douris V., Denecke S., Leeuwen T., Bass C., Nauen R., and Vontas J., 2020, Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond, Pesticide Biochemistry and Physiology,167: 104595. https://doi.org/10.1016/j.pestbp.2020.104595 Dutta T., Santhoshkumar K., Veeresh A., Waghmare C., Mathur C., and Sreevathsa R., 2023, RNAi-based knockdown of candidate gut receptor genes altered the susceptibility of Spodoptera frugiperdaand S. litura larvae to a chimeric toxin Cry1AcF, PeerJ, 11: e14716. https://doi.org/10.7717/peerj.14716 El-Mounadi K., Morales-Floriano M., and Garcia-Ruiz H., 2020, Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9, Frontiers in Plant Science, 11: 56. https://doi.org/10.3389/fpls.2020.00056 Erdoğan İ., Cevher-Keskin B., Bilir Ö., Hong Y., and Tör M., 2023, Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance, Biology, 12(7): 1037. https://doi.org/10.3390/biology12071037 Eş I., Gavahian M., Martí-Quijal F., Lorenzo J., Khaneghah A., Tsatsanis C., Kampranis S., and Barba F., 2019, The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges, Biotechnology Advances, 37(3): 410-421. https://doi.org/10.1016/j.biotechadv.2019.02.006 Fabrick J., LeRoy D., Mathew L., Wu Y., Unnithan G., Yelich A., Carrière Y., Li X., and Tabashnik B., 2021, CRISPR-mediated mutations in the ABC transporter gene ABCA2 confer pink bollworm resistance to Bt toxin Cry2Ab, Scientific Reports, 11(1): 10377. https://doi.org/10.1038/s41598-021-89771-7 Guo Z., Sun D., Kang S., Zhou J., Gong L., Qin J., Guo L., Zhu L., Bai Y., Luo L., and Zhang Y., 2019, CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), Insect Biochemistry and Molecular Biology, 107: 31-38. https://doi.org/10.1016/j.ibmb.2019.01.009 Huang J., Xu Y., Zuo Y., Yang Y., Tabashnik B., and Wu Y., 2020, Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts, Insect Biochemistry and Molecular Biology, 121: 103361. https://doi.org/10.1016/j.ibmb.2020.103361 Komal J., Desai H., Samal I., Mastinu A., Patel R., Kumar P., Majhi P., Mahanta D., and Bhoi T., 2023, Unveiling the genetic symphony: harnessing CRISPR-Cas genome editing for effective insect pest management, Plants, 12(23): 3961. https://doi.org/10.3390/plants12233961 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University-SCIENCE B, 22(4): 253-284. https://doi.org/10.1631/jzus.B2100009 Li Y., Wang C., Ge L., Hu C., Wu G., Sun Y., Song L., Wu X., Pan A., Xu Q., Shi J., Liang J., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Li Z., Cui J., Mi Z., Tian D., Wang J., Ma Z., Wang B., Chen H., and Niu S., 2019, Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops-a global meta-analysis, Science of the Total Environment, 651: 1830-1838. https://doi.org/10.1016/j.scitotenv.2018.10.073 Liu X.H., and Zhang J., 2024, CRISPR-Cas9 technology in Bt genome editing and functional studies, Bt Research, 15(2): 53-64. https://doi.org/10.5376/bt.2024.15.0006 Movahedi A., Aghaei-Dargiri S., Li H., Zhuge Q., and Sun W., 2023, CRISPR variants for gene editing in plants: biosafety risks and future directions, International Journal of Molecular Sciences, 24(22): 16241. https://doi.org/10.3390/ijms242216241 Nair K., Al-thani R., Ginibre C., Chandre F., Alsafran M., and Jaoua S., 2020, Bacillus thuringiensis strains isolated from Qatari soil, synthesizing δ-endotoxins highly active against the disease vector insect Aedes aegypti Bora Bora, Heliyon, 6(10): e05003. https://doi.org/10.1016/j.heliyon.2020.e05003 Rao M., and Wang L., 2021, CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture, Planta, 254: 1-16. https://doi.org/10.1007/s00425-021-03716-y Reyaz A., Balakrishnan N., and Udayasuriyan V., 2019, Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes, Microbial Pathogenesis, 134: 103553. https://doi.org/10.1016/j.micpath.2019.103553 Sauka D., Peralta C., Pérez M., Molla A., Fernandez-Göbel T., Ocampo F., and Palma L., 2023, Bacillus thuringiensis Bt_UNVM-84, a novel strain showing insecticidal activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae), Toxins, 16(1): 4. https://doi.org/10.3390/toxins16010004
RkJQdWJsaXNoZXIy MjQ4ODYzNA==