BM_2024v15n4

Bioscience Methods 2024, Vol.15, No.4, 162-172 http://bioscipublisher.com/index.php/bm 1 72 Li P., Walsh J., Lopez K., Isidan A., Zhang W., Chen A., Goggins W., Higgins N., Liu J., Brutkiewicz R., Smith L., Hara H., Cooper D., and Ekser B., 2021, Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses, Scientific Reports, 11(1): 13131. https://doi.org/10.1038/s41598-021-92543-y Lin X.F., 2024, Engineering immune-compatible organs: genetic modifications in pigs for reduced rejection in human recipients, Animal Molecular Breeding, 14(1): 106-118 https://doi.org/10.5376/amb.2024.14.0013 Niu D., Ma X., Yuan T., Niu Y., Xu Y., Sun Z., Ping Y., Li W., Zhang J., Wang T., and Church G., 2021, Porcine genome engineering for xenotransplantation, Advanced drug delivery reviews, 168: 229-245. https://doi.org/10.1016/j.addr.2020.04.001 Perleberg C., Kind A., and Schnieke A., 2018, Genetically engineered pigs as models for human disease, Disease Models & Mechanisms, 11(1): dmm030783. https://doi.org/10.1242/dmm.030783 Ryczek N., Hryhorowicz M., Lipinski D., Zeyland J., and Słomski R., 2020, Evaluation of the CRISPR/Cas9 genetic constructs in efficient disruption of porcine genes for xenotransplantation purposes along with an assessment of the off-target mutation formation, Genes, 11(6): 713. https://doi.org/10.3390/genes11060713 Sykes M., and Sachs D., 2019, Transplanting organs from pigs to humans, Science Immunology, 4(41): eaau6298. https://doi.org/10.1126/sciimmunol.aau6298 Tanihara F., Hirata M., Nguyen N., Le Q., Hirano T., and Otoi T., 2019, Effects of concentration of CRISPR/Cas9 components on genetic mosaicism in cytoplasmic microinjected porcine embryos, The Journal of Reproduction and Development, 65(3): 209-214. https://doi.org/10.1262/jrd.2018-116 Wiater J., Karasinski J., Słomski R., Smor ąg Z., Wartalski K., Gajda B., Jura J., and Romek M., 2020, The effect of recombinant human alpha-1,2-fucosyltransferase and alpha-galactosidase a on the reduction of alpha-gal expression in the liver of transgenic pigs, Folia Biologica, 68(4): 121-133. https://doi.org/10.3409/FB_68-4.14 Yang H., Zhang J., Zhang X., Shi J., Pan Y., Zhou R., Li G., Li Z., Cai G., and Wu Z., 2018, CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus, Antiviral Research, 151: 63-70. https://doi.org/10.1016/j.antiviral.2018.01.004 Zhang R., Wang Y., Chen L., Wang R., Li C., Li X., Fang B., Ren X., Ruan M., Liu J., Xiong Q., Zhang L., Jin Y., Zhang M., Liu X., Li L., Chen Q., Pan D., Li R., Cooper D., Yang H., and Dai Y., 2018, Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β 4GalNT2/CMAH, Acta biomaterialia, 72: 196-205. https://doi.org/10.1016/j.actbio.2018.03.055 Zhang T., 2024, Enhancing immunotolerance in genetically modified pigs for xenotransplantation: mechanisms and outcomes, International Journal of Molecular Zoology, 14(2): 72-83. https://doi.org/10.5376/ijmz.2024.14.0009 Zheng S., Zhong H., Zhou X., Chen M., Li W., Zi Y., Chi Y., Wang J., Zheng W., Zou Q., Lai L., and Tang C., 2022, Efficient and safe editing of porcine endogenous retrovirus genomes by multiple-site base-editing editor, Cells, 11(24): 3975. https://doi.org/10.3390/cells11243975 Zheng Z., Fu X., Ling X., Sun H., Li Y., Ma Z., Wei B., Zheng H., Xiao S., 2022, Host cells actively resist porcine reproductive and respiratory syndrome virus infection via the irf8-microrna-10a-srp14 regulatory pathway, Journal of Virology, 96(7): e00003-22. https://doi.org/10.1128/jvi.00003-22

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==