BM_2024v15n4

Bioscience Methods 2024, Vol.15, No.4, 149-161 http://bioscipublisher.com/index.php/bm 160 Lima-Melo Y., Kılıç M., Aro E., and Gollan P., 2021, Photosystem I inhibition, protection and signalling: knowns and unknowns, Frontiers in Plant Science, 12: 124. https://doi.org/10.3389/fpls.2021.791124 Liu H., Jian L., Xu J., Zhang Q., and Yan J., 2020, High-Throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize, Plant Cell, 32: 1397-1413. https://doi.org/10.1105/tpc.19.00934 Liu J., Lu Y., Hua W., and Last R., 2019, A new light on photosystem maintenance in oxygenic photosynthesis, Frontiers in Plant Science, 10: 75. https://doi.org/10.3389/fpls.2019.00975 Liu L., Gallagher J., Arevalo E., Chen R., and Jackson D., 2021, Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes, Nature Plants, 7: 287-294. https://doi.org/10.1038/s41477-021-00858-5 Liu L., Hao L., Zhang Y., Zhou H., Ma B., Cheng Y., Tian Y., Chang Z., and Zheng Y., 2022, The CO2 fertilization effect on leaf photosynthesis of maize (Zea mays L.) depends on growth temperatures with changes in leaf anatomy and soluble sugars, Frontiers in Plant Science, 13: 78. https://doi.org/10.3389/fpls.2022.890928 Lokstein H., Renger G., and Götze J., 2021, Photosynthetic light-harvesting (antenna) complexes-structures and functions, Molecules, 26: 178. https://doi.org/10.3390/molecules26113378 Long L., Pedas P., Kristensen R., Schulze W., Husted S., Zhang G., Schjoerring J., and Yuan L., 2020, Latent mn deficiency in maize is aggravated by high light intensity as revealed by physiological, transcriptomic and proteomic analyses, Journal of Experimental Botany, 3: 366-387. https://doi.org/10.1093/jxb/eraa366 Lorenzo C., Debray K., Herwegh D., Develtere W., Impens L., Schaumont D., Vandeputte W., Aesaert S., Coussens G., Boe Y., Demuynck K., Hautegem T., Pauwels L., Jacobs T., Ruttink T., Nelissen H., and InzéD., 2022, Breedit: a multiplex genome editing strategy to improve complex quantitative traits in maize, The Plant Cell, 4: 243. https://doi.org/10.1093/plcell/koac243 Ma C., Feng Y., Wang J., Zheng B., Wang X., and Jiao N., 2023, Integrative physiological, transcriptome, and proteome analyses provide insights into the photosynthetic changes in maize in a maize-peanut intercropping system, Plants, 1: 86. https://doi.org/10.3390/plants13010065 Milenković I., Borišev M., Zhou Y., Spasic S., Leblanc R., and Radotić K., 2021, Photosynthesis enhancement in maize via nontoxic orange carbon dots, Journal of Agricultural and Food Chemistry, 298: 87-89. https://doi.org/10.1021/acs.jafc.1c01094 Muhammad I., Shalmani A., Ali M., Yang Q., Ahmad H., and Li F., 2021, Mechanisms regulating the dynamics of photosynthesis under abiotic stresses, Frontiers in Plant Science, 11: 43-78. https://doi.org/10.3389/fpls.2020.615942 Nasar J., Wang G., Ahmad S., Muhammad I., Zeeshan M., Gitari H., Adnan M., Fahad S., Khalid M., Zhou X., Abdelsalam N., Ahmed G., and Hasan M., 2022, Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns, Frontiers in Plant Science, 13: 66-89. https://doi.org/10.3389/fpls.2022.988055 Pan X., Ma J., Su X., Cao P., Chang W., Liu Z., Zhang X., and Li M., 2018, Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II, Science, 360: 1109-1113. https://doi.org/10.1126/science.aat1156 Rogowski P., Wasilewska-Dębowska W., and Romanowska E., 2019, Photosynthesis and organization of maize mesophy and bundle sheath thylakoids of plants grown in various light intensities, Environmental and Experimental Botany, 19: 6. https://doi.org/10.1016/J.ENVEXPBOT.2019.02.006 Sharwood R., Quick W., Sargent D., Estavillo G., Silva-Pérez V., and Furbank R., 2022, Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives, Journal of Experimental Botany, 81: 7654-7659. https://doi.org/10.1093/jxb/erac081 Stefanov M., Rashkov G., Borisova P., and Apostolova E., 2023, Sensitivity of the photosynthetic apparatus in maize and sorghum under different drought levels, Plants, 12: 64. https://doi.org/10.3390/plants12091863 Steinbeck J., Ross I., Rothnagel R.,Takahashi Y., Hippler M., and Hankamer B., 2018, Structure of a PSI–LHCI–cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions, Proceedings of the National Academy of Sciences, 115: 10517-10522. https://doi.org/10.1073/pnas.1809973115 Stirbet A., Lazár D., Guo Y., and Govindjee G., 2019, Photosynthesis: basics, history, and modeling, Annals of Botany, 3: 171. https://doi.org/10.1093/aob/mcz171 Tao S., Liu P., Shi Y., Feng Y., Gao J., Chen L., Zhang A., Cheng X., Wei H., Tao Z., and Zhang W., 2022, Single-cell transcriptome and network analyses unveil key transcription factors regulating mesophyll cell development in maize, Genes, 13: 90. https://doi.org/10.3390/genes13020374 Vayghan H., Nawrocki W., Schiphorst C., Tolleter D., Hu C., Douet V., Glauser G., Giovanni F., Croce R., Wientjes E., and Longoni F., 2021, Photosynthetic light harvesting and thylakoid organization in a CRISPR/Cas9 Arabidopsis Thaliana LHCB1 knockout mutant, Frontiers in Plant Science, 13: 34.

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==