BM_2024v15n4

Bioscience Methods 2024, Vol.15, No.4, 149-161 http://bioscipublisher.com/index.php/bm 159 Bezouw R., Keurentjes J., Harbinson J., and Aarts M., 2019, Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency, The Plant Journal, 97: 112-133. https://doi.org/10.1111/tpj.14190 Borba A., Reyna-Llorens I., Dickinson P., Steed G., Gouveia P., Górska A., Gomes C., Kromdijk J., Webb A., Saibo N., and Hibberd J., 2023, Compartmentation of photosynthesis gene expression in C4 maize depends on time of day, Plant Physiology, 193: 2306-2320. https://doi.org/10.1093/plphys/kiad447 Borba A., Serra T., Górska A., Gouveia P., Cordeiro A., Reyna-Llorens I., Kneřová J., Barros P., Abreu I., Oliveira M., Hibberd J., and Saibo N., 2018, Synergistic binding of bHLH transcription factors to the promoter of the maize NADP-ME gene used in C4 photosynthesis is based on an ancient code found in the ancestral C3 state, Molecular Biology and Evolution, 35: 1690-1705. https://doi.org/10.1093/molbev/msy060 Chen Y., Zhou B., Li J., Tang H., Tang J., and Yang Z., 2018, Formation and change of chloroplast-located plant metabolites in response to light conditions, International Journal of Molecular Sciences, 19: 54. https://doi.org/10.3390/ijms19030654 Correia P., Silva A., Vaz M., Carmo‐Silva E., and Silva J., 2021, Efficient regulation of CO2 assimilation enables greater resilience to high temperature and drought in maize, Frontiers in Plant Science, 12: 6. https://doi.org/10.3389/fpls.2021.675546 Crepin A., Kučerová Z., Kosta A., Durand E., and Caffarri S., 2019, Isolation and characterization of a large photosystem i-light harvesting complex ii supercomplex with an additional lhca1-a4 dimer in arabidopsis, The Plant journal : for Cell and Molecular Biology, 6: 7. https://doi.org/10.1111/tpj.14634 Dai X., Tu X., Du B., Dong P., Sun S., Wang X., Sun J., Li G., Lu T., Zhong S., and Li P., 2021, Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize, The Plant Journal: for Cell and Molecular Biology, 8: 7. https://doi.org/10.1111/tpj.15586 Gao Z., Yang X., Mei Y., Zhang J., Chao Q., and Wang B., 2022, A dynamic phosphoproteomic analysis provides insight into the C4 plant maize (Zea mays L.) response to natural diurnal changes, The Plant Journal: for Cell and Molecular Biology, 3: 10. https://doi.org/10.1111/tpj.16047 Gou F., Ittersum M., Couëdel A., Zhang Y., Wang Y., Putten P., Zhang L., and Werf W., 2018. Intercropping with wheat lowers nutrient uptake and biomass accumulation of maize, but increases photosynthetic rate of the ear leaf, AoB Plants, 10: 78. https://doi.org/10.1093/aobpla/ply010 Halpape W., Wulf D., Verwaaijen B., Stasche A., Weber A., Delker C., Eisenhut M., and Bräutigam A., 2023, Transcription factors mediating regulation of photosynthesis, bioRxiv, 6: 76. https://doi.org/10.1101/2023.01.06.522973 Jang S., and Mennucci B., 2018, Delocalized excitons in natural light-harvesting complexes, Reviews of Modern Physics, 11: 12. https://doi.org/10.1103/RevModPhys.90.035003 Jansson C., Vogel J., Hazen S., Brutnell T., and Mockler T., 2018, Climate-smart crops with enhanced photosynthesis, Journal of Experimental Botany, 69: 3801-3809. https://doi.org/10.1093/jxb/ery213 Juzoń K., Idziak-Helmcke D., Czyczyło-Mysza I., Dziurka K., and Skrzypek E., 2020., Functioning of the photosynthetic apparatus in response to drought stress in oat maize addition lines, International Journal of Molecular Sciences, 21: 90-100. https://doi.org/10.3390/ijms21186958 Koester R., Pignon C., Kesler D., Willison R., Kang M., Shen Y., Priest H., Begemann M., Cook K., Bannon G., and Oufattole M., 2021, Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production, PLoS ONE, 16: 35-40. https://doi.org/10.1371/journal.pone.0246359 Kolbe A., Studer A., Cornejo O., and Cousins A., 2019. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO2, BMC Genomics, 20: 56-67. https://doi.org/10.1186/s12864-019-5522-7 Li H., He X., Gao Y., Liu W., Song J., and Zhang J., 2023b, Integrative analysis of Transcriptome, Proteome, and Phosphoproteome reveals potential roles of photosynthesis antenna proteins in response to brassinosteroids signaling in maize, Plants, 12: 89-90. https://doi.org/10.3390/plants12061290 Li P., Wang A., Du W., Mao L., Wei Z., Wang S., Yuan H., Ji R., and Zhao L., 2020a, Insight into the interaction between fe-based nanomaterials and maize (Zea mays) plants at metabolic level, The Science of the Total Environment, 738: 139795. https://doi.org/10.1016/j.scitotenv.2020.139795 Li R., He Y., Chen J., Zheng S., and Zhuang C., 2023a, Research progress in improving photosynthetic efficiency, International Journal of Molecular Sciences, 24: 87. https://doi.org/10.3390/ijms24119286 Li X., Wang P., Li J., Wei S., Yan Y., Yang J., Zhao M., Langdale J., and Zhou W., 2020b, Maize golden2-like genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition, Communications Biology, 3: 87. https://doi.org/10.1038/s42003-020-0887-3

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==