BM_2024v15n3

Bioscience Methods 2024, Vol.15, No.3, 124-138 http://bioscipublisher.com/index.php/bm 137 Attia Z., Harmon D., Behr E., and Friedman P., 2021, Application of artificial intelligence to the electrocardiogram, European Heart Journal, 3: 9. https://doi.org/10.1093/eurheartj/ehab649 Díez J., and Butler J., 2022, Growing heart failure burden of hypertensive heart disease: a call to action, Hypertension, 101161: 12219373. https://doi.org/10.1161/HYPERTENSIONAHA.122.19373 Díez J., and Frohlich E., 2010, A translational approach to hypertensive heart disease, Hypertension, 55(1): 1-8. https://doi.org/10.1161/HYPERTENSIONAHA.109.141887 Dimopoulos K., Condliffe R., Tulloh R., Clift P., Alonso-Gonzalez R., Bedair R., Chung N., Coghlan G., Fitzsimmons S., Frigiola A., Howard L., Jenkins P., Kenny D., Li W., Spence M., Szantho G., Klemperer K., Wilson D., and Wort S., 2018, Echocardiographic screening for pulmonary hypertension in congenital heart disease: JACC review topic of the week, Journal of the American College of Cardiology, 72(22): 2778-2788. https://doi.org/10.1016/j.jacc.2018.08.2201 Gautam N., Ghanta S., Mueller J., Mansour M., Chen Z., Puente C., Ha Y., Tarun T., Dhar G., Sivakumar K., Zhang Y., Halimeh A., Nakarmi U., Al-Kindi S., Demazumder D., and Al’Aref S., 2022, Artificial intelligence, wearables and remote monitoring for heart failure: current and future applications, Diagnostics, 12: 64. https://doi.org/10.3390/diagnostics12122964 Gogi G., and Gegov A., 2019, Application of deep learning for the diagnosis of cardiovascular diseases, Diagnostics, Diagnostics, 9: 781-791. https://doi.org/10.1007/978-3-030-29516-5_59 Hardacre C., Robertshaw J., Barratt S., Adams H., Ross R., Robinson G., Suntharalingam J., Pauling J., and Rodrigues J., 2021, Diagnostic test accuracy of artificial intelligence analysis of cross-sectional imaging in pulmonary hypertension: a systematic literature review, The British Journal of Radiology, 20: 210332. https://doi.org/10.1259/bjr.20210332 Huang J., Wang J., Ramsey E., Leavey G., Chico T., and Condell J., 2022, Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: a review, Sensors (Basel, Switzerland), 22: 2. https://doi.org/10.3390/s22208002 Ismail T., Frey S., Kaufmann B., Winkel D., Boll D., Zellweger M., and Haaf P., 2023, Hypertensive heart disease-the imaging perspective, Journal of Clinical Medicine, 12: 22. https://doi.org/10.3390/jcm12093122 Judge C., Roshanov P., O'donnell M., and Tripp B., 2023,A deep learning approach to personalised anti-hypertensive medication titration, Nephrology Dialysis Transplantation, 3: 8. https://doi.org/10.1093/ndt/gfad063c_3815 Khan M., Aziz S., Akram T., Amjad F., Iqtidar K., Nam Y., and Khan M., 2021, Expert hypertension detection system featuring pulse plethysmograph signals and hybrid feature selection and reduction scheme, Sensors (Basel, Switzerland), 21: 3. https://doi.org/10.3390/s21010247 Kovacs G., Avian A., Foris V., Tscherner M., Kqiku X., Douschan P., Bachmaier G., Olschewski A., Matucci-Cerinic M., and Olschewski H., 2016, Use of ECG and other simple non-invasive tools to assess pulmonary hypertension, PLoS ONE, 11: 81. https://doi.org/10.1371/journal.pone.0168706. Krittanawong C., Rogers A., Johnson K., Wang Z., Turakhia M., Halperin J., and Narayan S., 2020, Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management, Nature Reviews Cardiology, 18: 75-91. https://doi.org/10.1038/s41569-020-00445-9 Kwon J., and Kim K., 2020, Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography, The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation, 39: 4S-S13. https://doi.org/10.1016/j.healun.2020.01.1132 Kwon J., Kim K., Medina-Inojosa J., Jeon K., Park J., and Oh B., 2020, Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography, The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation, 4: 9. https://doi.org/10.1016/J.HEALUN.2020.04.009 Lee S., Chu Y., Ryu J., Park Y., Yang S., and Koh S., 2022, Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: a systematic review and meta-analysis, Yonsei Medical Journal, 63: S93-S107. https://doi.org/10.3349/ymj.2022.63.s93 Li J., Haq A., Din S., Khan J., Khan A., and Saboor A., 2020, Heart disease identification method using machine learning classification in e-healthcare, IEEE Access, 8: 107562-107582. https://doi.org/10.1109/ACCESS.2020.3001149 Li X., Gao X., Tse G., Hong S., Chen K., Li G., and Liu T., 2022, Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis, Journal of Geriatric Cardiology: JGC, 19(12): 970-980. https://doi.org/10.11909/j.issn.1671-5411.2022.12.002 Mordi I., Singh S., Rudd A., Srinivasan J., Frenneaux M., Tzemos N., and Dawson D., 2017, Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects, JACC Cardiovascular Imaging, 11(4): 577-585. https://doi.org/10.1016/j.jcmg.2017.05.022

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==