BM_2024v15n3

Bioscience Methods 2024, Vol.15, No.3, 114-123 http://bioscipublisher.com/index.php/bm 123 Tanaka T., Miyata Y., Tamaya K., Kusano R., Matsuo Y., Tamaru S., Tanaka K., Matsui T., Maeda M., and Kouno I., 2009, Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves, Journal of Agricultural and Food Chemistry, 57: 5816-5822. https://doi.org/10.1021/jf900963p Wang W., Zhou Y., Wu Y., Dai X., Liu Y., Qian Y., Li M., Jiang X., Wang Y., Gao L., and Xia T., 2018, Insight into catechins metabolic pathways of camellia sinensis based on genome and transcriptome analysis, Journal of Agricultural and Food Chemistry, 66(16): 4281-4293. https://doi.org/10.1021/acs.jafc.8b00946 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality, Proceedings of the National Academy of Sciences of the United States of America, 115: E4151-E4158. https://doi.org/10.1073/pnas.1719622115 Wilson S., and Roberts S., 2014, Metabolic engineering approaches for production of biochemicals in food and medicinal plants, Current Opinion in Biotechnology, 26: 174-182. https://doi.org/10.1016/j.copbio.2014.01.006 Wu G., Sun X., Cheng H., Xu S., Li D., and Xie Z., 2022, Large yellow tea extract ameliorates metabolic syndrome by suppressing lipogenesis through SIRT6/SREBP1 pathway and modulating microbiota in leptin receptor knockout rats, Foods, 11: 8. https://doi.org/10.3390/foods11111638 Xia E., Zhang H., Sheng J., Li K., Zhang Q., Kim C., Zhang Y., Liu Y., Zhu T., Li W., Huang H., Tong Y., Nan H., Shi C., Shi C., Jiang J., Mao S., Jiao J., Zhang D., Zhao Y., Zhao Y., Zhang L., Liu Y., Liu B., Yu Y., Shao S., Ni D., Eichler E., and Gao L., 2017, The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis, Molecular Plant, 10(6): 866-877. https://doi.org/10.1016/j.molp.2017.04.002 Yadav S., and Ahuja P., 2007, Towards generating caffeine-free tea by metabolic engineering, Plant Foods for Human Nutrition, 62: 185-191. https://doi.org/10.1007/S11130-007-0060-X Yu Z., Liao Y., Zeng L., Dong F., Watanabe N., and Yang Z., 2020, Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment, Food Research International, 129: 108842. https://doi.org/10.1016/j.foodres.2019.108842 Zeng L., Wang X., Tan H., Liao Y., Xu P., Kang M., Dong F., and Yang Z., 2020, An alternative pathway to the formation of trans-cinnamic acid derived from l-phenylalanine in tea (Camellia sinensis) plants and other plants, Journal of Agricultural and Food Chemistry, 9: 20. https://doi.org/10.1021/acs.jafc.9b07467 Zhang L., Ho C., Zhou J., Santos J., Armstrong L., and Granato D., 2019, Chemistry and biological activities of processed camellia sinensis teas: a comprehensive review, Comprehensive Reviews in Food Science and Food Safety, 18(5): 1474-1495. https://doi.org/10.1111/1541-4337.12479 Zhang S., Zhang L., Tai Y., Wang X., Ho C., and Wan X., 2018, Gene discovery of characteristic metabolic pathways in the tea plant (Camellia sinensis) Using ‘omics’-based network approaches: a future perspective, Frontiers in Plant Science, 9: 80. https://doi.org/10.3389/fpls.2018.00480 Zhang Y., Li P., She G., Xu Y., Peng A., Wan X., Zhao J., 2021, Molecular basis of the distinct metabolic features in shoot tips and roots of tea plants (Camellia sinensis): characterization of MYB regulator for root theanine synthesis, Journal of Agricultural and Food Chemistry, 72: 5. https://doi.org/10.1021/acs.jafc.0c07572 Zhao D., Zhu X., Zhou H., Sun N., Wang T., Bi C., and Zhang X., 2020, CRISPR-based metabolic pathway engineering, Metabolic Engineering, 16: 4. https://doi.org/10.1016/j.ymben.2020.10.004 Zhu X., Zhao D., Qiu H., Fan F., Man S., Bi C., and Zhang X., 2017, The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the escherichia coli xylose utilization pathway, Metabolic Engineering, 43: 37-45. https://doi.org/10.1016/j.ymben.2017.08.003

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==