BM_2024v15n3

Bioscience Methods 2024, Vol.15, No.3, 114-123 http://bioscipublisher.com/index.php/bm 122 Bag S., Mondal A., and Banik A., 2021, Exploring tea (Camellia sinensis) microbiome: Insights into the functional characteristics and their impact on tea growth promotion, Microbiological Research, 254: 126890. https://doi.org/10.1016/j.micres.2021.126890 Basu A., Du M., Sanchez K., Leyva M., Betts N., Blevins S., Wu M., Aston C., and Lyons T., 2011, Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome, Nutrition, 27(2): 206-213. https://doi.org/10.1016/j.nut.2010.01.015 Bindes M., Reis M., Cardoso V., and Boffito D., 2019, Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds), Ultrasonics Sonochemistry, 51: 111-119. https://doi.org/10.1016/j.ultsonch.2018.10.014 Chen S.Y., 2024, Effect of microorganisms on catechin synthesis in Biluochun Tea, Journal of Tea Science Research, 14(1): 1-9. Cheng S., Fu X., Wang X., Liao Y., Zeng L., Dong F., and Yang Z., 2017, Studies on the biochemical formation pathway of the amino acid l-theanine in tea (Camellia sinensis) and other plants, Journal of Agricultural and Food Chemistry, 65(33): 7210-7216. https://doi.org/10.1021/acs.jafc.7b02437 García S., Ntelkis N., Nguyen T., and Goossens A., 2023, Engineering the plant metabolic system by exploiting metabolic regulation, The Plant Journal: for Cell and Molecular Biology, 5: 7. https://doi.org/10.1111/tpj.16157 Jakočiūnas T., Jensen M., and Keasling J., 2017, System-level perturbations of cell metabolism using CRISPR/Cas9, Current Opinion in Biotechnology, 46: 134-140. https://doi.org/10.1016/j.copbio.2017.03.014 Jeszka-Skowron M., Zgoła-Grześkowiak A., and Frankowski R., 2018, Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS determination of catechins, flavonols, phenolic acids and alkaloids-a comparison with camellia sinensis, rooibos and hoan ngoc herbal tea, Journal of Food Composition and Analysis, 16: 3. https://doi.org/10.1016/J.JFCA.2018.09.003 Leonard E., Runguphan W., Connor S., and Prather K., 2009, Opportunities in metabolic engineering to facilitate scalable alkaloid production, Nature Chemical Biology, 5: 292-300. https://doi.org/10.1038/nchembio.160 Lian J., HamediRad M., Hu S., and Zhao H., 2017, Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system, Nature Communications, 8: 9. https://doi.org/10.1038/s41467-017-01695-x Li M., Liu H., Wu D., Kenaan A., Geng F., Li H., Gunaratne A., Li H., and Gan R., 2022, L-theanine: a unique functional amino acid in tea (Camellia sinensis L.) with multiple health benefits and food applications, Frontiers in Nutrition, 9: 87. https://doi.org/10.3389/fnut.2022.853846 Liu L., Li Y., She G., Zhang X., Jordan B., Chen Q., Zhao J., and Wan X., 2018, Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading, BMC Plant Biology, 18: 30. https://doi.org/10.1186/s12870-018-1440-0 Li Y., Lin Z., Huang C., Zhang Y., Wang Z., Tang Y., Chen T., and Zhao X., 2015, Metabolic engineering of escherichia coli using CRISPR-Cas9 meditated genome editing, Metabolic Engineering, 31: 13-21. https://doi.org/10.1016/j.ymben.2015.06.006 Nishida K., and Kondo A., 2020, CRISPR-derived genome editing technologies for metabolic engineering, Metabolic Engineering, 12: 2. https://doi.org/10.1016/j.ymben.2020.12.002 Punyasiri P., Abeysinghe I., Kumar V., Treutter D., Duy D., Gosch C., Martens S., Forkmann G., and Fischer T., 2004, Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways, Archives of Biochemistry and Biophysics, 431: 22-30. https://doi.org/10.1016/J.ABB.2004.08.003 Samanta S., 2020, Potential bioactive components and health promotional benefits of tea (Camellia sinensis), Journal of the American College of Nutrition, 78: 1-29. https://doi.org/10.1080/07315724.2020.1827082 Sánchez M., González-Burgos E., Iglesias I., Lozano R., and Gómez-Serranillos P., 2020, The pharmacological activity of Camellia sinensis L. kuntze on metabolic and endocrine disorders: a systematic review, Biomolecules, 10: 98. https://doi.org/10.3390/biom10040603 Singh K., Rani A., Kumar S., Sood P., Mahajan M., Yadav S., Singh B., and Ahuja P., 2008, An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis), Tree Physiology, 28(9): 1349-1356. https://doi.org/10.1093/TREEPHYS/28.9.1349 Shi C., Yang H., Wei C., Yu O., Zhang Z., Jiang C., Sun J., Li Y., Chen Q., Xia T., and Wan X., 2011, Deep sequencing of the camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds, BMC Genomics, 12: 131-136. https://doi.org/10.1186/1471-2164-12-131

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==