BM_2024v15n3

Bioscience Methods 2024, Vol.15, No.3, 102-113 http://bioscipublisher.com/index.php/bm 112 Lee H., Georgiadou A., Otto T., Levin M., Coin L., Conway D., and Cunnington A., 2018, Transcriptomic studies of malaria: a paradigm for investigation of systemic host-pathogen interactions, Microbiology and Molecular Biology Reviews: MMBR, 17: 82. https://doi.org/10.1128/MMBR.00071-17 Li L., and Deng X., 2008, Microarray-based approaches to rice transcriptome analysis, Scientific Reports, 11: 37-51. https://doi.org/10.1007/978-3-540-74250-0_4 Liao Z., Ni Z., Wei X., Chen L., Li J., Yu Y., Jiang W., Jiang B., He Y., and Huang S., 2019, Dual RNA-seq of Xanthomonas oryzae pv. oryzicola infecting rice reveals novel insights into bacterial-plant interaction, PLoS ONE, 14: 71. https://doi.org/10.1371/journal.pone.0215039 Liu W., and Wang G., 2016, Plant innate immunity in rice: a defense against pathogen infection, National Science Review, 3: 295-308. https://doi.org/10.1093/NSR/NWW015 Liu W., Liu J., Triplett L., Leach J., and Wang G., 2014, Novel insights into rice innate immunity against bacterial and fungal pathogens, Annual Review of Phytopathology, 52: 213-241. https://doi.org/10.1146/annurev-phyto-102313-045926 Lowe R., Shirley N., Bleackley M., Dolan S., and Shafee T., 2017, Transcriptomics technologies, PLoS Computational Biology, 13: 71. Lu T., Lu G., Fan D., Zhu C., Li W., Zhao Q., Feng Q., Zhao Y., Guo Y., Li W., Huang X., and Han B., 2010, Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq, Genome Research, 20(9): 1238-1249. https://doi.org/10.1101/gr.106120.110 Mahesh H., Shirke M., Wang G., and Gowda M., 2020, In planta transcriptome analysis reveals tissue-specific expression of pathogenicity genes and microRNAs during rice-Magnaporthe interactions, Genomics: 11. https://doi.org/10.1016/j.ygeno.2020.12.018 McGettigan P., 2013, Transcriptomics in the RNA-seq era, Current Opinion in Chemical Biology, 17(1): 4-11. https://doi.org/10.1016/j.cbpa.2012.12.008 Meng Q., Gupta R., Min C., Kwon S., Wang Y., Je B., Kim Y., Jeon J., Agrawal G., Rakwal R., and Kim S., 2019, Proteomics of rice-Magnaporthe oryzae interaction: what have we learned so far, Frontiers in Plant Science, 10: 83. https://doi.org/10.3389/fpls.2019.01383 Mishra R., Joshi R., and Zhao K., 2018, Genome editing in rice: recent advances, challenges, and future implications, Frontiers in Plant Science, 9: 161. https://doi.org/10.3389/fpls.2018.01361 Rao S., Ghosh D., Asturias E., and Weinberg A., 2019, What can we learn about influenza infection and vaccination from transcriptomics, Human Vaccines & Immunotherapeutics, 15: 2615-2623. https://doi.org/10.1080/21645515.2019.1608744 Rauyaree P., Choi W., Fang E., Blackmon B., and Dean R., 2001, Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea, Molecular Plant Pathology, 2: 347-354. https://doi.org/10.1046/j.1464-6722.2001.00085.x Roychoudhury A., 2020, Rice research for quality improvement: genomics and genetic engineering: volume 2: nutrient biofortification and herbicide and biotic stress resistance in rice, Rice Research for Quality Improvement: Genomics and Genetic Engineering, 7: 89-100. https://doi.org/10.1007/978-981-15-5337-0 Ryu H., Han M., Lee S., Cho J., Ryoo N., Heu S., Lee Y., Bhoo S., Wang G., Hahn T., and Jeon J., 2006, A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response, Plant Cell Reports, 25: 836-847. https://doi.org/10.1007/s00299-006-0138-1 Sahu J., Panda D., Baruah G., Patar L., Sen P., Borah B., and Modi M., 2019, Revealing shared differential co-expression profiles in rice infected by virus from reoviridae and sequiviridae group, Gene, 698: 82-91. https://doi.org/10.1016/j.gene.2019.02.063 Sarki Y., Marwein R., Singh S., Dekaboruah H., Singha D., and Chikkaputtaiah C., 2020, Understanding the mechanism of host-pathogen interaction in rice through genomics approaches, PLOS Biology, 8: 1-33. https://doi.org/10.1007/978-981-15-5337-0_1 Shen Z., Lin Y., and Zou Q., 2020, Transcription factors-DNA interactions in rice: identification and verification, Briefings in Bioinformatics, 93: 6. https://doi.org/10.1093/bib/bbz045 Sugihara Y., Abe Y., Takagi H., Abe A., Shimizu M., Ito K., Kanzaki E., Oikawa K., Kourelis J., Langner T., Win J., Białas A., Lüdke D., Contreras M., Chuma I., Saitoh H., Kobayashi M., Zheng S., Tosa Y., Banfield M., Kamoun S., Terauchi R., and Fujisaki K., 2022, Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector, PLOS Biology, 21: 7. https://doi.org/10.1101/2022.07.19.500555 Tyagi P., Singh D., Mathur S., Singh A., and Ranjan R., 2022, Upcoming progress of transcriptomics studies on plants: an overview, Frontiers in Plant Science, 13: 90. https://doi.org/10.3389/fpls.2022.1030890 Wei L., Wang D., Gupta R., Kim S., and Wang Y., 2023, A proteomics insight into advancements in the rice–microbe interaction, Plants, 12: 79. https://doi.org/10.3390/plants12051079 Westermann A., Barquist L., and Vogel J., 2017, Resolving host–pathogen interactions by dual RNA-seq, PLoS Pathogens, 13: 71. https://doi.org/10.1371/journal.ppat.1006033

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==