BM_2024v15n2

Bioscience Method 2024, Vol.15, No.2, 76-88 http://bioscipublisher.com/index.php/bm 87 Hibbing M.E., Fuqua C., Parsek M.R., and Peterson S.B., 2010, Bacterial competition: surviving and thriving in the microbial jungle, Nature Reviews Microbiology, 8(1): 15-25. https://doi.org/10.1038/nrmicro2259 Klitgord N., and Segrè D., 2010, Environments that induce synthetic microbial ecosystems, PLoS Computational Biology, 6(11): e1001002. https://doi.org/10.1371/journal.pcbi.1001002 Kostic A.D., Howitt M.R., and Garrett W.S., 2013, Exploring host-microbiota interactions in animal models and humans, Cell, 154(2): 253-266. Kumar L., Patel S.K.S., Kharga K., Kumar R., Kumar P., Pandohee J., Kulshresha S., Harjai K., and Chhibber S., 2022, Molecular mechanisms and applications of n-acyl homoserine lactone-mediated quorum sensing in bacteri, Molecule, 27(21): 7584. https://doi.org/10.3390/molecules27217584 Li B., Taniguchi D., Gedara J.P., Gogulancea V., González-Cabaleiro R., Chen J., McGough A.S., Ofiţeru I.D., Curtis T.P., and Zuliani P., 2019, Nufeb: a massively parallel simulator for individual-based modelling of microbial communities, PLoS Computational Biology, 15(7): e1007125. https://doi.org/10.1371/journal.pcbi.1007125 Linnarsson S., and Teichmann S.A., 2016, Single-cell RNA-seq: new molecular insights into the cellular hierarchy, Nature Reviews Genetics, 17(1): 71-87. https://doi.org/10.1186/s13059-016-0960-x Liu H., Jian L., Xu J., Zhang Q., Zhang M., Jin M., and Yan J., 2020, High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize, Plant Cell, 32: 1397-1413. https://doi.org/10.1105/tpc.19.00934 Liu Y., Qin Y., and Bai Y., 2019, Reductionist synthetic community approaches in root microbiome research, Current Opinion in Microbiology, 49: 97-102. https://doi.org/10.1016/j.mib.2019.10.010 Lovley D.R., 2019, Heavy metal bioremediation using engineered microbial consortia, Microbial Biotechnology, 12(3): 456-468. Mendes-Soares H., Mundy M.B., Soares L.M., and Chia N., 2016, Mminte: an application for predicting metabolic interactions among the microbial species in a community, BMC Bioinformatics, 17: 13. https://doi.org/10.1186/s12859-016-1230-3 Nawy T., 2016, Capturing microbial interactions, Nature Methods, 14: 35-35. https://doi.org/10.1038/nmeth.4117 Neuman H., Debelius J.W., Knight R., and Koren O., 2015, Microbial endocrinology: the interplay between the microbiota and the endocrine system, FEMS Microbiology Reviews, 39(4): 509-521. https://doi.org/10.1093/femsre/fuu010 Org E., Parks B., and Joo J.W., 2015, Genetic and environmental control of host-gut microbiota interactions, Genome Research, 25: 1558-1569. https://doi.org/10.1101/gr.194118.115 Pacheco A.R., and Segrè D., 2019, A multidimensional perspective on microbial interactions, FEMS Microbiology Letters, 366: 125. https://doi.org/10.1093/femsle/fnz125 Palazzotto E., and Weber T., 2018, Omics and multi-omics approaches to study the biosynthesis of bacterial secondary metabolites, Natural Product Reports, 35(6): 1015-1030. Perez-Garcia O., Lear G., and Singhal N., 2016, Metabolic network modeling of microbial interactions in natural and engineered environmental systems, Frontiers in Microbiology, 7: 673. https://doi.org/10.3389/fmicb.2016.00673 Puchkov E.O., 2021, Computerized fluorescence microscopy of cells: Commercial possibilities and advantages over light microscopy, Biology, 10(3): 231. Sander J.D., and Joung J.K., 2014, Crispr-cas systems for editing, regulating and targeting genomes, Nature Biotechnology, 32(4): 347-355. https://doi.org/10.1038/nbt.2842 Schmid M.C., Risgaard-Petersen N., Van De Vossenberg J., Kuypers M.M., Lavik G., Niemann H., and Jetten M.S., 2015, Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity, Environmental Microbiology, 7(11): 2095-2106. Shayanthan A., Ordoñez P.A., and Oresnik I., 2022, The role of synthetic microbial communities (syncom) in sustainable agriculture, Frontiers in Agronomy, 4: 896307. https://doi.org/10.3389/fagro.2022.896307 Sieuwerts S., 2016, Microbial interactions in the yoghurt consortium: current status and product implications, Journal of Microbiology, 4: 1-5. https://doi.org/10.15226/sojmid/4/2/00150 Strnad M., Houkal D., Norek M., Wernischova I., and Hynecek J., 2015, Correlative cryo-fluorescence and cryo-scanning electron microscopy: volume imaging of cellular ultrastructure and protein localization, Scientific Reports, 5: 18039. https://doi.org/10.1038/srep18029 Tsoi R., Dai Z., and You L., 2019, Emerging strategies for engineering microbial communities, Biotechnology Advances, 37(2): 107371. https://doi.org/10.1016/j.biotechadv.2019.03.011 van Leeuwen P., Brul S., Zhang J., and Wortel M.T., 2023, Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications, Fems Microbiology Reviews, 16(12): e0010935. https://doi.org/10.1093/femsre/fuad012 Xu P., 2020, Dynamics of microbial competition, commensalism, and cooperation and its implications for coculture and microbiome engineering, Biotechnology and Bioengineering, 118: 199-209. https://doi.org/10.1002/bit.27562

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==