BM_2024v15n1

Bioscience Method 2024, Vol.15, No.1, 8-19 http://bioscipublisher.com/index.php/bm 19 GWAS has become an indispensable tool for crop genetic research and crop improvement, and its contribution to understanding crop genetic diversity and promoting crop trait improvement cannot be ignored. In the future, through technological innovation and interdisciplinary cooperation, GWAS is expected to solve the challenges faced, further unleash its potential in crop genetic research and crop improvement, and make greater contributions to the sustainable development of global agriculture. References Abdelraheem A., Thyssen G.N., Fang D.D., Jenkins J.N., McCarty J.C., Wedegaertner T., 2021, GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 upland cotton (Gossypium hirsutum) parents, Mol. Gen. Genomics, 296: 119-129. https://doi.org/10.1007/s00438-020-01733-2 Ahmad F., Akram A., Farman K., Abbas T., Bibi A., Khalid S., 2017, Molecular markers and marker assisted plant breeding: current status and their applications in agricultural development, J. Environ. Agric. Sci., 11: 35-50. Alsheikh A.J., Wollenhaupt S., King E.A., Reeb J., Ghosh S., Stolzenburg L.R., Tamim S., Lazar J., Davis J.W., and Jacob H.J., 2022, The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases, BMC Med Genomics, 1;15(1): 74. https://doi.org/10.1186/s12920-022-01216-w Bardak A., Çelik S., Erdoğan O., Ekinci R., and Dumlupinar Z., 2021, Association mapping of Verticillium wilt disease in a worldwide collection of cotton (Gossypium hirsutum L.), Plants, 10: 306. https://doi.org/10.3390/plants10020306 Berhe M., Dossa K., and You J., 2021, Genome-wide association study and its applications in the non-model crop Sesamum indicum, BMC Plant Biology, 21(1): 283. https://doi.org/10.1186/s12870-021-03046-x Bhat J.A., Yu D., Bohra A., and Varshney R.K., 2021, Features and applications of haplotypes in crop breeding, Communications biology, 4(1): 1266. https://doi.org/10.1038/s42003-021-02782-y Bomba L., Walter K., and Soranzo N., 2017, The impact of rare and low-frequency genetic variants in common disease, Genome Biol., 18: 77. https://doi.org/10.1186/s13059-017-1212-4 os H., Kawuki R.S., Gracen V.E., Yencho G.C., and Hershey C.H., 2015, Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava, Theor. Appl. Genet. 128, 1647-1667. https://doi.org/10.1007/s00122-015-2555-4 Chen W.N., Coombes B.J., and Larson N.B., 2022, Recent advances and challenges of rare variant association analysis in the biobank sequencing era, Front. Genet., 13: 2022. https://doi.org/10.3389/fgene.2022.1014947 Fakhriddin N.K., Ozod S.T., Dilrabo K.E., Bunyod M.G., Barno B.O., Mukhlisa K.K., Feruza U.R., Kuvandik K.K., Doston S.E., Mukhammad T.K., Madina D.K., Naim N.K., Roza S.A., Sukumar S., John Z.Y., and Ibrokhim Y.A., 2021, Genetic Diversity, QTL Mapping, and Marker-Assisted Selection Technology in Cotton (Gossypium spp.), Front. Plant Sci., 12:39. https://doi.org/10.3389/fpls.2021.779386 Hasan N., Choudhary S., and Naaz N., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, J .Genet Eng. Biotechnol, 19: 128. https://doi.org/10.1186/s43141-021-00231-1 Muez B., Komivi D., Jun Y., Pape A.M., Idrissa N.D., Diaga D., Zhang X.R., and Wang L.H., 2021, Genome-wide association study and its applications in the non-model crop Sesamum indicum, SpringerLink, 21(283): 31-39. https://doi.org/10.1186/s12870-021-03046-x Nouraei S., Mia M.S., Liu H., 2024, Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Mol Genet Genomics 299: 22. https://doi.org/10.1007/s00438-024-02104-x Peng Z., Zhao C., Li S., Guo Y., Xu H., Hu G., 2022, Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat, Hortic. Res. 9, uhac037. https://doi.org/10.1093/hr/uhac037 Sahito J.H., Zhang H., Gishkori Z.G.N., et al. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize, International Journal of Molecular Sciences, 2024, 25(3): 1918. https://doi.org/10.3390/ijms25031918 Soodeh T., Jaco Z., William J.W., Jacob M., David E., Jacqueline B., 2022, Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies, Front Plant Sci., 13: 22. https://doi.org/10.3389/fpls.2022.1008904 Yang D.D., Mumtaz A.S., Huang L.Y., Walid B.A., Zhang J., Wu Y., Li J., Muzafar H.S., and Wang F.Y., Front. Plant Sci., 12: 39. Zhang R., Zhang C.P., Yu C.Y., Dong J.G., Hu J.H., 2022, Integration of multi-omics technologies for crop improvement: Status and prospects, Sec. Integrative Bioinformatics, 2: 27. https://doi.org/10.3389/fbinf.2022.1027457

RkJQdWJsaXNoZXIy MjQ4ODYzMg==