Bioscience Evidence 2025, Vol.15, No.5, 249-259 http://bioscipublisher.com/index.php/be 257 Crossa J., Montesinos-López O., Costa-Neto G., Vitale P., Martini J., Runcie D., Fritsche-Neto R., Montesinos-López A., Pérez-Rodríguez P., Gerard G., Dreisigacker S., Crespo-Herrera L., Pierre C., Lillemo M., Cuevas J., Bentley A., and Ortiz R., 2024, Machine learning algorithms translate big data into predictive breeding accuracy, Trends in Plant Science, 30(2): 167-184. https://doi.org/10.1016/j.tplants.2024.09.011 Esposito S., Carputo D., Cardi T., and Tripodi P., 2019, Applications and trends of machine learning in genomics and phenomics for next-generation breeding, Plants, 9(1): 34. https://doi.org/10.3390/plants9010034 Farooq M., Gao S., Hassan M., Huang Z., Rasheed A., Hearne S., Prasanna B., Li X., and Li H., 2024, Artificial intelligence in plant breeding, Trends in genetics: TIG, 40(10): 891-908. https://doi.org/10.1016/j.tig.2024.07.001 Fritsche‐Neto R., Galli G., Borges K., Costa-Neto G., Alves F., Sabadin F., Lyra D., Morais P., De Andrade L., Granato Í., and Crossa J., 2021, Optimizing genomic-enabled prediction in small-scale maize hybrid breeding programs: a roadmap review, Frontiers in Plant Science, 12: 658267. https://doi.org/10.3389/fpls.2021.658267 Galli G., Sabadin F., Yassue R., De Souza C., Carvalho H., and Fritsche‐Neto R., 2021, Automated machine learning: a case study of genomic “image-based” prediction in maize hybrids, Frontiers in Plant Science, 13: 845524. https://doi.org/10.3389/fpls.2022.845524 Gedil M., and Menkir A., 2019, An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa, Frontiers in Plant Science, 10: 1430. https://doi.org/10.3389/fpls.2019.01430 Govaichelvan K., Pathmanathan D., Abidin R., and Abu A., 2023, Machine learning for major food crops breeding: applications, challenges, and ways forward, Agronomy Journal, 116(3): 1112-1125. https://doi.org/10.1002/agj2.21393 Guo Y., Zhang X., Chen S., Wang H., Jayavelu S., Cammarano D., and Fu Y., 2022, Integrated UAV-based multi-source data for predicting maize grain yield using machine learning approaches, Remote. Sens., 14: 6290. https://doi.org/10.3390/rs14246290 He B., Pan S., Zhao J., Zou X., Liu X., and Wu S., 2024, Maize improvement based on modern breeding strategies: progress and perspective, ACS Agricultural Science & Technology, 4(3): 274-282. https://doi.org/10.1021/acsagscitech.3c00427 He K., Yu T., Gao S., Chen S., Li L., Zhang X., Huang C., Xu Y., Wang J., Prasanna B., Hearne S., Li X., and Li H., 2025, Leveraging automated machine learning for environmental data‐driven genetic analysis and genomic prediction in maize hybrids, Advanced Science, 12(17): 2412423. https://doi.org/10.1002/advs.202412423 Jiang S., Cheng Q., Yan J., Fu R., and Wang X., 2019, Genome optimization for improvement of maize breeding, Theoretical and Applied Genetics, 133:1491-1502. https://doi.org/10.1007/s00122-019-03493-z Kamilaris A., Kartakoullis A., and Prenafeta-BoldúF., 2017, A review on the practice of big data analysis in agriculture, Comput. Electron. Agric., 143: 23-37. https://doi.org/10.1016/j.compag.2017.09.037 Kudiyarasudevi C., and Suresh S., 2024, Enhanced genomic prediction for maize breeding using deep learning and k-mer-based sequence encoding, 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 933-940. https://doi.org/10.1109/ICICNIS64247.2024.10823173 Lassoued R., Macall D., Smyth S., Phillips P., and Hesseln H., 2021, Expert insights on the impacts of, and potential for, agricultural big data, Sustainability, 13(5): 2521. https://doi.org/10.3390/SU13052521 Li Y., Wen W., Fan J., Gou W., Gu S., Lu X., Yu Z., Wang X., and Guo X., 2023, Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform, Plant Phenomics, 5: 43. https://doi.org/10.34133/plantphenomics.0043 Liu H., Liu J., Zhai Z., Dai M., Tian F., Wu Y., Tang J., Lu Y., Wang H., Jackson D., Yang X., Qin F., Xu M., Fernie A., Zhang Z., and Yan J., 2025, Maize2035: A decadal vision for intelligent maize breeding, Molecular Plant, 18(2): 313-332. https://doi.org/10.1016/j.molp.2025.01.012 Liu S., and Qin F., 2021, Genetic dissection of maize drought tolerance for trait improvement, Molecular Breeding: New Strategies in Plant Improvement, 41: 8. https://doi.org/10.1007/s11032-020-01194-w Lorenzo C., Debray K., Herwegh D., Develtere W., Impens L., Schaumont D., Vandeputte W., Aesaert S., Coussens G., De Boe Y., Demuynck K., Van Hautegem T., Pauwels L., Jacobs T., Ruttink T., Nelissen H., and InzéD., 2022, BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize, The Plant Cell, 35(1): 218-238. https://doi.org/10.1093/plcell/koac243 Meng L., Liu H., Ustin S., and Zhang X., 2021, Predicting maize yield at the plot scale of different fertilizer systems by multi-source data and machine learning methods, Remote. Sens., 13: 3760. https://doi.org/10.3390/rs13183760
RkJQdWJsaXNoZXIy MjQ4ODYzNA==