BE_2025v15n5

Bioscience Evidence 2025, Vol.15, No.5, 237-248 http://bioscipublisher.com/index.php/be 246 Huang J., Ma Q., Cai Z., Xia Q., Li S., Jia J., Chu L., Lian T., Nian H., and Cheng Y., 2020, Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.], Journal of Agricultural and Food Chemistry, 68(23): 6448-6460. https://doi.org/10.1021/acs.jafc.0c01271 Huang Y., Meng B., Qin Y., Liu J., Lu A., Dai X., Zhao Y., and Ge L., 2025, Comparative proteomic atlas of two soybean varieties with contrasting seed oil and protein content, Journal of Agricultural and Food Chemistry, 73(4): 2279-2288. https://doi.org/10.1021/acs.jafc.4c07447 Jia H., Han D., Yan X., Zhang L., Liang J., and Lu W., 2024, Genome-wide association and RNA-Seq analyses reveal a potential candidate gene related to oil content in soybean seeds, International Journal of Molecular Sciences, 25(15): 8134. https://doi.org/10.3390/ijms25158134 Jin H., Yang X., Zhao H., Song X., Tsvetkov Y., Wu Y., Gao Q., Zhang R., and Zhang J., 2023, Genetic analysis of protein content and oil content in soybean by genome-wide association study, Frontiers in Plant Science, 14: 1182771. https://doi.org/10.3389/fpls.2023.1182771 Kim W., Kang B., Moon C., Kang S., Shin S., Chowdhury S., Choi M., Park S., Moon J., and Ha B., 2023, Quantitative trait loci (QTL) analysis of seed protein and oil content in wild soybean (Glycine soja), International Journal of Molecular Sciences, 24(4): 4077. https://doi.org/10.3390/ijms24044077 Kumar V., Goyal V., Mandlik R., Kumawat S., Sudhakaran S., Padalkar G., Rana N., Deshmukh R., Roy J., Sharma T., and Sonah H., 2022, Pinpointing genomic regions and candidate genes associated with seed oil and protein content in soybean through an integrative transcriptomic and QTL meta-analysis, Cells, 12(1): 97. https://doi.org/10.3390/cells12010097 Kumar V., Vats S., Kumawat S., Bisht A., Bhatt V., Shivaraj S., Padalkar G., Goyal V., Zargar S., Gupta S., Kumawat G., Chandra S., Chalam V., Ratnaparkhe M., Gill B., Jean M., Patil G., Vuong T., Rajcan I., Deshmukh R., Belzile F., Sharma T., Nguyen H., and Sonah H., 2021, Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.), Critical Reviews in Plant Sciences, 40: 398-421. https://doi.org/10.1080/07352689.2021.1954778 Kumari V., Thakur R., Kumari J., Kumari A., and Khajuria D., 2023, Nutritional improvement in soybean (Glycine max (L.) Merrill) through plant breeding and biotechnological interventions, Crop and Pasture Science, 75(1): CP23155. https://doi.org/10.1071/cp23155 Lakhssassi N., Zhou Z., Cullen M., Badad O., Baze A., Chetto O., Embaby M., Knizia D., Liu S., Neves L., and Meksem K., 2021, TILLING-by-sequencing+ to decipher oil biosynthesis pathway in soybeans: a new and effective platform for high-throughput gene functional analysis, International Journal of Molecular Sciences, 22(8): 4219. https://doi.org/10.3390/ijms22084219 Lee S., Van K., Sung M., Nelson R., LaMantia J., McHale L., and Mian M., 2019, Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV, TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 132: 1639-1659. https://doi.org/10.1007/s00122-019-03304-5 Li S., Cong Y., Liu Y., Wang T., Shuai Q., Chen N., Gai J., and Li Y., 2017, Optimization of agrobacterium-mediated transformation in soybean, Frontiers in Plant Science, 8: 246. https://doi.org/10.3389/fpls.2017.00246 Li Y., Reif J., Hong H., Li H., Liu Z., Ma Y., Li J., Tian Y., Li Y., Li W., and Qiu L., 2018, Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions, Plant Science: An International Journal of Experimental Plant Biology, 266: 95-101. https://doi.org/10.1016/j.plantsci.2017.04.013 Lin F., Chhapekar S., Vieira C., Da Silva M., Rojas A., Lee D., Liu N., Pardo E., Lee Y., Dong Z., Pinheiro J., Ploper L., Rupe J., Chen P., Wang D., and Nguyen H., 2022, Breeding for disease resistance in soybean: a global perspective, TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 135: 3773-3872. https://doi.org/10.1007/s00122-022-04101-3 Liu S., Liu Z., Hou X., and Li X., 2023, Genetic mapping and functional genomics of soybean seed protein, Molecular Breeding, 43: 1-25. https://doi.org/10.1007/s11032-023-01373-5 Liu S., Zhang M., Feng F., and Tian Z., 2020, Toward a 'green revolution' for soybean, Molecular Plant, 13(5): 688-697. https://doi.org/10.1016/j.molp.2020.03.002 Lu L., Wei W., Li Q., Bian X., Lu X., Hu Y., Cheng T., Wang Z., Jin M., Tao J., Yin C., He S., Man W., Li W., Lai Y., Zhang W., Chen S., and Zhang J., 2021, A transcriptional regulatory module controls lipid accumulation in soybean, The New Phytologist, 231(2): 661-678. https://doi.org/10.1111/nph.17401 Ma J., Sun S., Whelan J., and Shou H., 2021, CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds, International Journal of Molecular Sciences, 22(8): 3877. https://doi.org/10.3390/ijms22083877 Miao L., Yang S., Zhang K., He J., Wu C., Ren Y., Gai J., and Li Y., 2019, Natural variation and selection in GmSWEET39 affect soybean seed oil content, The New Phytologist, 225: 1651-1666. https://doi.org/10.1111/nph.16250

RkJQdWJsaXNoZXIy MjQ4ODYzNA==