BE_2025v15n5

Bioscience Evidence 2025, Vol.15, No.5, 228-236 http://bioscipublisher.com/index.php/be 235 Landolfi V., Visioli G., and Blandino M., 2021, Effect of nitrogen fertilization and fungicide application at heading on the gluten protein composition and rheological quality of wheat, Agronomy, 11(9): 1687. https://doi.org/10.3390/agronomy11091687 Li M., Li L., Sun B., and Ma S., 2023, Interaction of wheat bran dietary fiber-gluten protein affects dough product: A critical review, International Journal of Biological Macromolecules, 255: 128199. https://doi.org/10.1016/j.ijbiomac.2023.128199 Li S., Zhang C., Li J., Yan L., Wang N., and Xia L., 2021, Present and future prospects for wheat improvement through genome editing and advanced technologies, Plant Communications, 2(4): 100211. https://doi.org/10.1016/j.xplc.2021.100211 Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., and Gao C., 2017, Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nature Communications, 8: 14261. https://doi.org/10.1038/ncomms14261 Liu D., Yang H., Zhang Z., Chen Q., Guo W., Rossi V., Xin M., Du J., Hu Z., Liu J., Peng H., Ni Z., Su Q., and Yao Y., 2023, An elite γ-gliadin allele improves end-use quality in wheat, The New Phytologist, 239(1): 87-101. https://doi.org/10.1111/nph.18722 Marín-Sanz M., Barro F., and Sánchez-León S., 2023, Unraveling the celiac disease-related immunogenic complexes in a set of wheat and tritordeum genotypes: implications for low-gluten precision breeding in cereal crops, Frontiers in Plant Science, 14: 1171882. https://doi.org/10.3389/fpls.2023.1171882 Moehs C., Austill W., Holm A., Large T., Loeffler D., Mullenberg J., Schnable P., Skinner W., Van Boxtel J., Wu L., and McGuire C., 2019, Development of decreased-gluten wheat enabled by determination of the genetic basis of lys3a Barley1, Plant Physiology, 179: 1692-1703. https://doi.org/10.1104/pp.18.00771 Nye-Wood M., Juhász A., Bose U., and Colgrave M., 2021, Proteome analysis and epitope mapping in a commercial reduced-gluten wheat product, Frontiers in Nutrition, 8: 705822. https://doi.org/10.3389/fnut.2021.705822 Ozuna C., and Barro F., 2018, Characterization of gluten proteins and celiac disease-related immunogenic epitopes in the Triticeae: cereal domestication and breeding contributed to decrease the content of gliadins and gluten, Molecular Breeding, 38: 1-16. https://doi.org/10.1007/s11032-018-0779-0 Pilolli R., Gadaleta A., Di Stasio L., Lamonaca A., De Angelis E., Nigro D., De Angelis M., Mamone G., and Monaci L., 2019, A comprehensive peptidomic approach to characterize the protein profile of selected durum wheat genotypes: implication for coeliac disease and wheat allergy, Nutrients, 11(10): 2321. https://doi.org/10.3390/nu11102321 Pilolli R., Gadaleta A., Mamone G., Nigro D., De Angelis E., Montemurro N., and Monaci L., 2019, Scouting for naturally low-toxicity wheat genotypes by a multidisciplinary approach, Scientific Reports, 9: 1646. https://doi.org/10.1038/s41598-018-36845-8 Pourmohammadi K., Abedi E., and Hashemi S., 2023, Gliadin and glutenin genomes and their effects on the technological aspect of wheat-based products, Current Research in Food Science, 7: 100622. https://doi.org/10.1016/j.crfs.2023.100622 Sánchez-León S., Gil‐Humanes J., Ozuna C., Giménez M., Sousa C., Voytas D., and Barro F., 2017, Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9, Plant Biotechnology Journal, 16: 902-910. https://doi.org/10.1111/pbi.12837 Sánchez-León S., Marín-Sanz M., Guzmán-López M., Gavilán-Camacho M., Simón E., and Barro F., 2024, CRISPR/Cas9-mediated multiplex gene editing of gamma and omega gliadins: paving the way for gliadin-free wheat, Journal of Experimental Botany, 75: 7079-7095. https://doi.org/10.1093/jxb/erae376 Schalk K., Lexhaller B., Koehler P., and Scherf K., 2017, Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials, PLoS ONE, 12(2): e0172819. https://doi.org/10.1371/journal.pone.0172819 Sharma N., Bhatia S., Chunduri V., Kaur S., Sharma S., Kapoor P., Kumari A., and Garg M., 2020, Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them, Frontiers in Nutrition, 7: 6. https://doi.org/10.3389/fnut.2020.00006 Shewry P., 2019, What is gluten—why is it special? Frontiers in Nutrition, 6: 101. https://doi.org/10.3389/fnut.2019.00101 Shewry P., and Belton P., 2024, What do we really understand about wheat gluten structure and functionality? Journal of Cereal Science, 117: 103895. https://doi.org/10.1016/j.jcs.2024.103895 Shewry P., Halford N., Belton P., and Tatham A., 2002, The structure and properties of gluten: an elastic protein from wheat grain, Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 357(1418): 133-142. https://doi.org/10.1098/RSTB.2001.1024 Vasil I., and Anderson O., 1997, Genetic engineering of wheat gluten, Trends in Plant Science, 2: 292-297. https://doi.org/10.1016/S1360-1385(97)89950-5

RkJQdWJsaXNoZXIy MjQ4ODYzNA==