Bioscience Evidence 2025, Vol.15, No.5, 219-227 http://bioscipublisher.com/index.php/be 227 Tian Y., Shuai Y., Shao C., Wu H., Fan L., Li Y., Chen X., Narimanov A., Usmanov R., and Baboeva S., 2023, Extraction of cotton information with optimized phenology-based features from Sentinel-2 images, Remote. Sens., 15: 1988. https://doi.org/10.3390/rs15081988 Van Dijk E., Naquin D., Gorrichon K., Jaszczyszyn Y., Ouazahrou R., Thermes C., and Hernandez C., 2023, Genomics in the long-read sequencing era, Trends in genetics: TIG, 39(9): 649-671. https://doi.org/10.1016/j.tig.2023.04.006 Wang M., Li J., Qi Z., Long Y., Pei L., Huang X., Grover C., Du X., Xia C., Wang P., Liu Z., You J., Tian X., Wang R., Chen X., He X., Fang D., Sun Y., Tu L., Jin S., Zhu L., Wendel J., and Zhang X., 2022, Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium, Nature Genetics, 54: 1959-1971. https://doi.org/10.1038/s41588-022-01237-2 Wang M., Li J., Wang P., Liu F., Liu Z., Zhao G., Xu Z., Pei L., Grover C., Wendel J., Wang K., and Zhang X., 2021, Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton, Molecular Biology and Evolution, 38: 3621-3636. https://doi.org/10.1093/molbev/msab128 Wang M., Tu L., Yuan D., Zhu D., Shen C., Li J., Liu F., Pei L., Wang P., Zhao G., Ye Z., Huang H., Yan F., Zhang L., Liu M., You J., Yang Y., Liu Z., Huang F., Li B., Qiu P., Zhang Q., Zhu L., Jin S., Yang X., Min L., Li G., Chen L., Zheng H., Lindsey K., Lin Z., Udall J., and Zhang X., 2018, Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense, Nature Genetics, 51: 224-229. https://doi.org/10.1038/s41588-018-0282-x Yan J., and Wang X., 2022, Machine learning bridges omics sciences and plant breeding, Trends in Plant Science, 28(2): 199-210. https://doi.org/10.1016/j.tplants.2022.08.018 Yang Y., Saand M., Huang L., Abdelaal W., Zhang J., Wu Y., Li J., Sirohi M., and Wang F., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 Yang Z., Qanmber G., Wang Z., Yang Z., and Li F., 2020, Gossypium genomics: trends, scope, and utilization for cotton improvement, Trends in Plant Science, 25(5): 488-500. https://doi.org/10.1016/j.tplants.2019.12.011 Yang Z., Wang J., Huang Y., Wang S., Wei L., Liu D., Weng Y., Xiang J., Zhu Q., Yang Z., Nie X., Yu Y., Yang Z., and Yang Q., 2022, CottonMD: a multi-omics database for cotton biological study, Nucleic Acids Research, 51: D1446-D1456. https://doi.org/10.1093/nar/gkac863 Yu J., Jung S., Cheng C., Ficklin S., Lee T., Zheng P., Jones D., Percy R., and Main D., 2013, CottonGen: a genomics, genetics and breeding database for cotton research, Nucleic Acids Research, 42: D1229-D1236. https://doi.org/10.1093/nar/gkt1064 Yu J., Jung S., Cheng C., Lee T., Zheng P., Buble K., Crabb J., Humann J., Hough H., Jones D., Campbell J., Udall J., and Main D., 2015, CottonGen: the community database for cotton genomics, genetics, and breeding research, Plants, 10(12): 2805. https://doi.org/10.3390/plants10122805 Zhu T., Liang C., Meng Z., Sun G., Meng Z., Guo S., and Zhang R., 2017, CottonFGD: an integrated functional genomics database for cotton, BMC Plant Biology, 17: 101. https://doi.org/10.1186/s12870-017-1039-x
RkJQdWJsaXNoZXIy MjQ4ODYzNA==