BE_2025v15n5

Bioscience Evidence 2025, Vol.15, No.5, 219-227 http://bioscipublisher.com/index.php/be 226 Hu Y., Chen J., Fang L., Zhang Z., Niu Y., Ju L., Deng J., Zhao T., Lian J., Baruch K., Fang D., Liu X., Ruan Y., Rahman M., Han J., Wang K., Wang Q., Wu H., Mei G., Zang Y., Han Z., Xu C., Shen W., Yang D., Si Z., Dai F., Zou L., Huang F., Bai Y., Zhang Y., Brodt A., Ben-Hamo H., Zhu X., Zhou B., Guan X., Zhu S., Chen X., and Zhang T., 2019, Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton, Nature Genetics, 51: 739-748. https://doi.org/10.1038/s41588-019-0371-5 Huang G., Wu Z., Percy R., Bai M., Li Y., Frelichowski J., Hu J., Wang K., Yu J., and Zhu Y., 2020, Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution, Nature Genetics, 52: 516-524. https://doi.org/10.1038/s41588-020-0607-4 Khalilisamani N., Li Z., Pettolino F., Moncuquet P., Reverter A., and MacMillan C., 2024, Leveraging transcriptomics-based approaches to enhance genomic prediction: integrating SNPs and gene networks for cotton fibre quality improvement, Frontiers in Plant Science, 15: 1420837. https://doi.org/10.3389/fpls.2024.1420837 Kumar R., Das J., Puttaswamy R., Kumar M., Balasubramani G., and Prasad Y., 2024, Targeted genome editing for cotton improvement: prospects and challenges, The Nucleus, 67: 181-203. https://doi.org/10.1007/s13237-024-00479-1 Li J., Liu Z., You C., Qi Z., You J., Grover C., Long Y., Huang X., Lu S., Wang Y., Zhang S., Wang Y., Bai R., Zhang M., Jin S., Nie X., Wendel J., Zhang X., and Wang M., 2024, Convergence and divergence of diploid and tetraploid cotton genomes, Nature Genetics, 56: 2562-2573. https://doi.org/10.1038/s41588-024-01964-8 Li J., Yuan D., Wang P., Wang Q., Sun M., Liu Z., Si H., Xu Z., Zhang B., Pei L., Tu L., Zhu L., Chen L., Lindsey K., Zhang X., Jin S., and Wang M., 2021, Cotton pan-genome retrieves the lost sequences and genes during domestication and selection, Genome Biology, 22: 119. https://doi.org/10.1186/s13059-021-02351-w Liu B., Madduri R., Sotomayor B., Chard K., Lacinski L., DavéU., Li J., Liu C., and Foster I., 2014, Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, Journal of Biomedical Informatics, 49: 119-133. https://doi.org/10.1016/j.jbi.2014.01.005 Logsdon G., Vollger M., and Eichler E., 2020, Long-read human genome sequencing and its applications, Nature Reviews Genetics, 21: 597-614. https://doi.org/10.1038/s41576-020-0236-x Manivannan A., and Amal T., 2023, Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture, Molecular Biology Reports, 50: 6937-6953. https://doi.org/10.1007/s11033-023-08565-4 Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C., Ens J., Gundlach H., Boston L., TulpováZ., Holden S., Herná ndez-Pinzó n I., Scholz U., Mayer K., Spannagl M., Pozniak C., Sharpe A., Šimková H., Moscou M., Grimwood J., Schmutz J., and Stein N., 2021, Long-read sequence assembly: a technical evaluation in barley, The Plant Cell, 33: 1888-1906. https://doi.org/10.1093/plcell/koab077 Naoumkina M., and Kim H., 2023, Bridging molecular genetics and genomics for cotton fiber quality improvement, Crop Science, 63(4): 1794-1815. https://doi.org/10.1002/csc2.20987 Oh M., Park S., Kim S., and Chae H., 2020, Machine learning-based analysis of multi-omics data on the cloud for investigating gene regulations, Briefings in Bioinformatics, 22(1): 66-76. https://doi.org/10.1093/bib/bbaa032 Pan Y., Meng F., and Wang X., 2020, Sequencing multiple cotton genomes reveals complex structures and lays foundation for breeding, Frontiers in Plant Science, 11: 560096. https://doi.org/10.3389/fpls.2020.560096 Peng Z., Li H., Sun G., Dai P., Geng X., Wang X., Zhang X., Wang Z., Jia Y., Pan Z., Chen B., Du X., and He S., 2021, CottonGVD: A Comprehensive genomic variation database for cultivated cottons, Frontiers in Plant Science, 12: 803736. https://doi.org/10.3389/fpls.2021.803736 Ren Y., Yu G., Shi C., Liu L., Guo Q., Han C., Zhang D., Zhang L., Liu B., Gao H., Zeng J., Zhou Y., Qiu Y., Wei J., Luo Y., Zhu F., Li X., Wu Q., Li B., Fu W., Tong Y., Meng J., Fang Y., Dong J., Feng Y., Xie S., Yang Q., Yang H., Wang Y., Zhang J., Gu H., Xuan H., Zou G., Luo C., Huang L., Yang B., Dong Y., Zhao J., Han J., Zhang X., and Huang H., 2022, Majorbio Cloud: A one‐stop, comprehensive bioinformatic platform for multiomics analyses, iMeta, 1(2): e12. https://doi.org/10.1002/imt2.12 Sheri V., Mohan H., Jogam P., Alok A., Rohela G., and Zhang B., 2025, CRISPR/Cas genome editing for cotton precision breeding: mechanisms, advances, and prospects, Journal of Cotton Research, 8: 4. https://doi.org/10.1186/s42397-024-00206-w Su J., Song S., Wang Y., Zeng Y., Dong T., Ge X., and Duan H., 2023, Genome-wide identification and expression analysis of DREB family genes in cotton, BMC Plant Biology, 23: 169. https://doi.org/10.1186/s12870-023-04180-4 Thriveni V., Teotia J., Hazra S., Bharti T., Kumar M., Lallawmkimi M., and Panwar D., 2024, A review on integrating bioinformatics tools in modern plant breeding, Archives of Current Research International, 24(9): 293-308. https://doi.org/10.9734/acri/2024/v24i9894

RkJQdWJsaXNoZXIy MjQ4ODYzNA==